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ABSTRACT

This paper presents a new multiprocessor architecture for
the parallel execution of logic programs, developed as part
of the Aquarius Project. This architecture is designed to
support AND-parallelism, OR-parallelism, and intelligent
backtracking. We present the most comprehensive experi-
mental results available to date on combined AND-
parallelism, OR-parallelism, and intelligent backtracking
in Prolog programs. Simulation results indicate that most
Prolog programs in use today cannot effectively make use
of multiprocessing.

1. Introduction

The Aquarius project is a research effort concerned with
the architectural issues of high performance computation. In
particular, we are focusing on Prolog as the user language of
the system. Previous work has led to the design of a high per-
formance sequential Prolog architecture: the PLM [DDP85].
This paper presents the next phase of the research: an exten-
sion of the sequential architecture to a parallel one. First, we
briefly discuss techniques for improving Prolog performance,
and discuss a new execution model for Prolog: the PPP model
(for Parallel Prolog Processor). We show how to extend the
instruction set of the PLM to support the PPP, and present
performance results of the architecture on a variety of bench-
mark programs. We conclude by analyzing the results of our
experiments, and discuss future work.

Throughout this paper, the reader is assumed to be fami-
liar with Prolog. For readers unfamiliar with Prolog, Clocksin
and Mellish’s text {CIM81] is an excellent introduction to the
language.

2. Techniques for Improving Prolog Performance

Several techniques have been proposed for improving the
performance of Prolog. Three of the most important are:
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1) AND-parallelism
2) OR-parallelism
3) Intelligent backtracking

In this section, we briefly discuss each technique.

2.1. AND-parallelism

AND-parallelism was first suggested by Conery in his
thesis [Con83]. AND-parallelism is the simultaneous solution
of more than one goal in the body of a clause. For example, in
the clause:

parents_of(Ch,M F) :- mother(Ch,M), father(Ch,F).

the simultaneous solution of the "mother" and "father" goals
would be an example of AND-parallelism.

The chief difficulty with AND-parallelism is the problem
of binding conflicts. If no restrictions are placed on the goals
to be solved in parallel, then it is possible that goals can bind
shared variables to different values. For example, consider the
clause:

tiger(X):- feline(X), carnivorous(X).

If the goals "feline" and "carnivorous” are executed in AND-
parallel fashion, they might bind the variable X to different
values. In addition to the synchronization overhead that this
implies, a consistency check must also be performed, to filter
out the bindings that do not match both goals.

This type of AND-parallelism, in which goals are allowed
to bind shared variables, is called unrestricted AND-
parallelism. Because this type of AND-parallelism entails con-
siderable runtime overhead, most schemes for AND-
parallelism incorporate compile-time analysis or program
annotation to denote which goals produce and consume vari-
able values [Con83], [DeM85]. These kind of schemes, in
which AND-parallel goals execute only if guaranteed not to
bind the same variables, utilize restricted AND-parallelism
[DeG84]. Restricted AND-parallelism, as outlined by DeGroot,
uses both compile-time and run-time checks to determine when
goals can be executed in AND-parallel fashion without binding
conflicts. The PPP employs a slightly narrower version of res-
tricted AND-parallelism, using only compile time analysis to
assist in the recovery of AND-parallelism [ChD85]. However,
as in DeGroot’'s scheme, goals that run in AND-parallel
fashion are guaranteed exclusive access to the variables they
bind.

2.2. OR-parallelism

OR-parallelism was also identified by Conery as a poten-
tial source of concurrency in Prolog [Con83]. OR-parallelism is
the simultaneous unification of multiple clauses in the pro-
gram with the current goal. For example, in the program:



next_vertex(X,Y) :- connected(X,Y), ...

connected(1,2).
connected(1,3).
connected(2,5).

the simultaneous examination of all the clauses for "con-
nected” by the goal "connected(X,Y)" would be an example of
OR-parallelism.

Like AND-parallelism, the principal problem with OR-
parallelism is that of multiple goals binding shared variables.
Unlike AND-parallelism, however, compile-time analysis is of
no value; OR-parallel goals by their very nature bind shared
variables. Thus any scheme for supporting OR-parallelism
must include a method for insulating the bindings generated
by OR processes from one another.

A great deal of research has been devoted to solving this
problem. The three main techniques were first proposed in
[CiH83], [Bor84), and [Lin84]. The PPP uses the technique
suggested in {Bor84], based on early indications of performance
and the appropriateness of the scheme to our implementation
of Prolog. For a more detailed explanation of OR-parallelism
in the PPP, the reader is referred to ([FaD87].

2.3. Intelligent Backtracking

When a Prolog goal fails, it 'backtracks’ by resuming exe-
cution at the most recent point in the computation where
alternative clauses existed to match the current goal. Such
points are referred to as ’choice points’. However, the most
recent choice point may not generate bindings relevant to the
original cause of failure. For example, consider the program:

¢(X,Y) :- a(X), b(Y).

and the query "c(X,3)?". If the goal "b(3)" has no solution,
backtracking will generate another solution to "a(X)". But
this will not affect the failure of b(3); further solutions to a(X)
will be generated unnecessarily.

The ideal solution is to backtrack not to the most recent
choice point, but to the most recent choice point that can pro-
duce bindings relevant to the cause of failure. This is called
"intelligent backtracking"”, and was first suggested by Pereira
et. al. [PeP80]. Substantial research has since been devoted
to intelligent backtracking. Our work in this area builds on
that of Chang and Despain [ChD85], [Cha85]. Chang intro-
duces the concept of "semi-intelligent backtracking”, in which
backtracking occurs to the most recent choice point that can
generate bindings appropriate to the cause of failure if such a
choice point was placed on the stack by one of the goals in the
current clause. In Chang’s scheme, the intelligent backtrack-
ing possibilities are determined at compile time, and are not
examined across clause boundaries; hence the term '“semi-
intelligent".

We have extended the work of Chang and Despain to
support intelligent backtracking in a parallel execution
environment. The necessary work is relatively simple; provi-
sions must merely be made for killing and restarting parallel
processes as a result of goal failure. This will be discussed in
future work. For a more detailed discussion of semi-intelligent
backtracking and parallel execution, the reader is referred to
[Cha85].
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3. The PPP Execution Model

Several execution models have been proposed for parallel
logic programming, including the AND/OR process model
[Con83], the "standard" OR-parallel model [CiH83], [Cra85],
and the stack-based AND-parallel model {Bor84], [Her86]. The
execution model of the PPP is discussed in ([FaD87]. in which
the PPP execution model is compared to other existing models.
Here, we will briefly outline the execution model of the PPP to
prepare the reader for the sections that follow.

3.1. Processes and Messages

Like other execution models for parallel Prolog, the PPP
contains two kinds of processes: AND processes, and OR
processes. An AND process corresponds in the obvious way to
a goal in the body of a clause, while OR processes correspond
to the clauses of a procedure. As their name suggests, AND
processes execute in AND-parallel fashion and are the means
by which AND-parallelism is exploited. Similarly, OR
processes execute in OR-parallel fashion and are the means by
which OR parallelism is utilized.

Processes communicate with each other through mes-
sages. There are four basics messages in the PPP: SUCCESS
(SUC), FAIL, NEXT ANSWER (NA), and KILL. SUC is sent
from a child to a parent to report the success of its original
goal. FAIL is sent¢ from child to parent to report failure. NA
is sent from parent to child to induce backtracking, while
KILL is sent from parent to child to terminate execution.
Messages sent from child to parent (SUC and FAIL) are infor-
mative, while those sent from parent to child (NA and KILL)
are imperative.

3.2. Process Behavior

Unlike other execution models, AND and OR processes in
the PPP execute in an identical manner. The PPP
differentiates between AND and OR processes when they send
messages. The behavior of a process upon receiving a message
is shown in table 1:

msg condition action

SUC  from OR if parent ready, push bindings

and continue; else put child to sleep

SucC from AND  if siblings have finished
continue; else record success and

put child to sleep

FAIL from OR if parent waiting on this child,
search for next child that has not
failed. If none, backtrack. If

next child has not yet succeeded,

go to sleep, otherwise push bindings
and continue. If parent not waiting
on this child, record failure.

Terminate child process.

FAIL from AND KILL all descendants of parent

created after child, backtrack

NA backtrack

KILL kill descendants and terminate execution

Table 1



4. The Instruction Set Architecture of the PPP

Previous work on the Aquarius Project has resulted in
the development of a high-performance architecture for Prolog:
the PLM [DDP85]. Our work continues the work of Dobry by
extending the PLM architecture to support the features of the
PPP execution model. In this section we show how this exten-
sion is done.

The PLM is a special-purpose architecture for Prolog. Its
instruction set is derived from the Prolog Instruction Set of
Warren [War83)]; a detailed description appears in [DPD84].
and [DDP85]. The new instructions necessary are those associ-
ated with AND-parallelism, OR-parallelism, and intelligent
backtracking. This paper will discuss the instructions neces-
sary for AND and OR parallelism. The new instructions
necessary to incorporate intelligent backtracking into the PLM
were introduced in [ChD85], and are not discussed here. The
extensions necessary to extend Chang’s intelligent backtrack-
ing algorithm to a parallel execution environment were rela-
tively simple, and will appear in future work.

The original PLM instruction set appears in [DDP85].
The new instructions are shown in Table 2.

instruction function used for
i_allocate begins code for clauses AND-par, I.B.
that use intelligent
backtracking or
AND-parallelism
call_p creates AND process AND-par
wait synchronizes execution of AND-par
parent with AND children
try_p creates first OR process OR-par
in a procedure
try_me_else_p " OR-par
retry_p creates second through OR-par
next-to-last OR processes
in a procedure
retry_me_else.p " OR-par
trust_p creates last OR process OR-par
in a procedure, puts
process to sleep
trust_me_else_p " OR-par

Table 2

"i_allocate” allocates a special environment on the run-
time stack; it is used for clauses that can take advantage of
AND-parallelism or intelligent backtracking.

"call_p" builds the data object on the stack necessary for
indicating the presence of an AND process to the parent, and
creates an AND-process for a particular goal.

"wait" is used to ensure that a process does not continue
execution until all of a given group of AND-children have
instantiated their variables. When the wait instruction is exe-
cuted, the process examines a synchronization counter. If this
counter is zero, it continues execution. [f it is positive, the
process goes to sleep. If other processes are available then this
process may be swapped out.

"try_p" builds a data object on the stack used for control-
ling a group of OR processes, and creates an OR process for the
first clause in a procedure. "retry_p" creates OR processes for
the second through next-to-last clauses in a procedure.
"trust_p" creates an OR process for the last clause in the pro-
cedure, and then puts the executing process to sleep.
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"try_me_else_p", "retry_me_else_p", and
"trust_me_else_p" are very similar to "try_p", "retry_p", and
"trust_p". They differ only in where the OR processes they
create begin execution and where execution continues in the
current process. Since these instructions are included only as
an aid to compilation, they are not essential to the complete-
ness of the instruction set, and are not discussed further here.

5. Compiling Prolog for the PPP: An Example

We now show a small example of the compilation of a
Prolog program. For the sake of illustration, we generate code
that employs parallelism whenever possible, ignoring efficiency
considerations. We will see that parallel code is only slightly
larger than sequential code.

As an illustration of PPP compilation, we consider the
following example [FaD87]:

main :- a(X), b(Y), ¢(X,Y).

a(1).
a(2).

b(1).
b(2).
b(3).

c(1,2).

5.1. Compilation for AND-parallelism

If the main clause of our example were compiled into
sequential PLM code, the result would be:

procedure main/0
allocate 2
put_variable Y2 X1
call a/1,2
put_variable Y1,X1
call b/1,2
put_unsafe_value Y2,X1
put_unsafe_value Y1,X2
deallocate
execute ¢/2

In the PPP, however, static analysis of the program reveals
that the goals a(X) and b(Y) can be solved in parallel. Thus
the compiler generates the following code:

procedure main/0

* i_allocate 2,_BT,_JT,2
put_variable Y2 X1

* call_p a/1,1,1
put_variable Y1,X1

* call_p b/1,2,1

* wait 1

put_unsafe_value Y2,X1
put_unsafe_value Y1,X2
deallocate
execute ¢/2

_BT:
_JT;
* 2
* 0

* changed from sequential code



Note that "allocate" has changed to "i_allocate"”, since the
clause is now utilizing AND-parallelism. The call instructions
have been changed to "call_p” instructions, and a wait instruc-
tion has been added to synchronize the parent with its chil-
dren. A join table has been added to the clause at label _JT.
Its only entry is 2, since two children must decrement it before
the parent can succeed; the 0 is included only to indicate the
end of the table to the assembler. Finally, a "backtrack table”
[ChD85] could be inserted by the compiler at label "_BT", if
intelligent backtracking were to be utilized.

5.2. Compiling for OR-parallelism

) Next, consider the code for the ’a’ procedure (the code for
‘b’ is similar). If compiled for sequential execution, the result-
ing code would be:

procedure a/l
switch_on_term _614 fail fail
try 617
retry ..619
trust _620
_617:
get_constant &1,X1
proceed
_619:
get_constant &2.X1
proceed
_620:
get_constant &3,X1
proceed
-614:
# (Indexing instructions follow.
# These are used if the procedure is called
# with a constant argument)

If we compile for OR-parallel execution, we obtain very
similar code:

procedure a/l
switch_on_term _614 fail fail

try_p 3,617
retry_p 2,_619
* trust_p 3,.620
_617:
get_constant &1,X1
proceed
_619:
get_constant &2 X1
proceed
_620:
get_constant &3,X1
proceed
-614:

* changed from sequential code

A try_p instruction replaces the try, which will create the
data structure on the runtime stack needed to coordinate the
transmission of bindings from a batch of OR-processes. It will
also create an OR process to begin execution at label _617.
The retry_p and trust_p instructions create the other two OR
processes.
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Note that the decisions to generate AND-parallel code for
clauses and OR-parallel code for procedures can be made
independently of one ancther; parallel clause code can be exe-
cuted with sequential procedure code. and vice versa.

6. The Process Table and the PPP Process Kernel

While we have presented the instruction set of the PPP,
many functions of the system remain to be discussed. For
example, in order to achieve efficient processor utilization, we
require a system-wide data structure that contains information
about all processes in the system. In addition, we have not
specified how the process behavior specified in table 1 is
achieved. In this section we examine these two ideas more
closely.

6.1. Processes in the PPP

A PPP process is a virtual PLM machine [DDP85]. This
includes all registers in the PLM register set. Each process
has its own writable address space, where its stack, heap, trail,
and PDL are located'. A process can read from the address
space of any of its ancestors, but with rare exceptions can

write only to its own?.

6.2. The Process Table

The PPP maintains a process table in main memory,
which all processors can examine and update. Each entry in
the process table is a PPP process. All processes currently in
the system exist in the process table. In this way, the table
can be examined for runnable processes when any processor
becomes available.

6.3. The PPP Process Kernel

The actions denoted in table 1 are the responsibility of
the PPP process kernel. The modules currently defined in the
process kernel are shown in table 4.

We note that while the messages of the PPP model are a
convenient abstraction, it is not necessary to actually send and
receive messages in a PPP implementation. It is the action
associated with each message that is important. Thus the pro-
cess kernel does not deal with messages at all. Instead, it con-
tains the routines that implement the semantic actions associ-
ated with the receipt of a given message by a given process.
In effect, the modules of the process kernel serve to fill in the
gaps in the implementation of the PPP left by the PLM
instruction set; they are responsible for all actions of a process
that affect other processes.

! For readers not familiar with these terms, these are the four memory
areas of the PLM. A more detailed description of them is found in [DDP85].

) % The exceptions occur when children update certain data structures in
their parent’s address space. For amore detailed description, see [FaD87].



PPP Process Kernel Modules

name function

PROCESS_SUCCESS(O) take appropriate action

when process succeeds

PROCESS_FAILURE() take appropriate action

when process fails

INDUCE_BACKTRACKING(O cause child to fail

PROCESS_CUT() take appropriate action

when process executes ‘cut

3

KILL_PROCESS() kill indicated process

FORK() create new process

DIE() terminate process

NEWPROCESS() scan process table for
runnable processes, assign
process to processor and

continue

SLEEP( put current process

to sleep, call NEWPROCESS()

Table 4 t

7. The Aquarius Multiprocessor

One of the goals of the Aquarius Project is the construc-
tion of a high performance multiprocessor system that supports
the PPP execution model. A diagram of this system is shown
in figure 1:

Synchronization

Memory

oodman d
Sacge m
Processor] PPP| | PPP| +++ | PPP|

Cache C C C

Crossbar

Main Memoty

Figure 1: The Aquarius Multiprocessor

Each PPP is a separate Parallel Prolog Processor, suit-
ably modified to execute the PPP instruction set. Each PPP is
connected to two memory systems. The lower memory system
consists of a cache for each processor, a crossbar, and sixteen
memory modules. The upper system consists of a coherent
cache and a synchronization memory, used to achieve atomic
operations on shared data. Cache coherency algorithms and
synchronization on the Aquarius Multiprocessor System are
currently active areas of research [BiD86], but are not dis-
cussed in this paper.
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The heap, stack, trail, and PDL for each process are part
of the lower system, as is the process table. Each processor
executes a PPP process, and can execute the routines of the
process kernel to create new processes, take the appropriate
action upon success and failure, and so forth.

8. The Simulator

In this section we discuss the simulator used to obtain
our performance results.

The PPP simulator is an extension of the PLM simulator
of Dobry [Dob85] In addition to modeling all sequential PLM
instructions, the PPP simulator includes the new instructions
of the PPP and the routines of the process kernel.

In attempting to measure PPP performance, we were
faced with the problem of evaluating a system containing com-
ponents in varying stages of development. The processors
themselves are based on the PLM, so the execution times of
sequential PLM instructions are known from [DDP85]. In
addition, the new instructions of the PPP can be accurately
estimated, based on a knowledge of their actions they perform
and the PLM datapath. There are, however, two sources of
uncertainty in modeling the PPP: the memory system architec-
ture, and the operating system.

8.1. Approximations in the PPP Simulator

Currently, the memory system architecture of the
Aquarius multiprocessor is under development, so we have not
attempted to model it. All reads and writes are assumed to
execute in one cycle; contention for memory modules, the
degradation of cache performance due to context swapping, and
other features of memory system behavior are not modeled.
However, since such modeling would reduce the performance
estimates even further, this strengthens our conclusions
regarding the inability of most Prolog benchmark to effectively
exploit multiprocessing.

In addition, the operating system software for Aquarius
currently exists only as a collection of C routines in the PPP
simulator. Thus timing estimates for system calls are difficult
to make. To address this problem, we identify certain opera-
tions as fundamental, supplying their associated execution
times as parameters to the simulation. The simulator can
then use these values to estimate performance.

The operations we identified as fundamental and the
values used in our simulation runs are shown below:

operation #cycles
process creation 50
process termination 25
invoke scheduler 50
interrupt running process 50

sync mem access 5

Table 5

Process creation in the PPP consists of the initialization
of a virtual PLM machine, the assignment of a portion of the
address space, and the allocation of a slot in the process table.
Process termination involves releasing the memory of a pro-
cess and freeing up its slot in the table. An invocation of the
scheduler consists of finding a runnable process and loading it
on an available processor. Processors may interrupt one
another on instruction boundaries; when this occurs it is
assumed to take 50 clock cycles. Finally, an access to the syn-
chronization memory is assumed to take 5 clock cycles.



We note that our assumptions are quite idealistic. How-
ever, this strengthens our conclusion that most Prolog pro-
grams being written today cannot effectively utilize con-
currency, owing to the costs involved. We shall see evidence of
this shortly.

8.2. Timing Estimation

The PPP simulator is an event-driven multiprocessor
simulator. An arbitrary number of processors (16 by default)
may be simulated. The simulation is interleaved at the PPP
instruction level: one processor is simulated for one PPP
instruction, then the next, and so forth.

The simulator maintains a clock for each processor. Each
time a routine is called, the clock of the processor being simu-
lated is incremented an appropriate number of cycles. The
simulator also keeps track of the number of fundamental
operations executed on each simulation step, and increments
the clock appropriately each time an operation is executed.

Frequently, processors will be come idle at the same time
as others become busy. When a processor becomes idle, this is
recorded in the simulator. When the processor becomes busy
again, its clock is set equal to the clock of the processor
responsible for waking it up. This is done to ensure correct
timing estimates for processors that become idle. Suppose, for
example, that at the beginning of a simulation run processor 0
were to run for 1000 cycles and then create a process to run on
previously idle processor 1. Processor 1's clock would then
begin at 1000. Suppose further that processor 0 then becomes
idle, while processor 1 runs for 500 cycles before performing an
action that causes processor 0 to wake up. Upon waking up,
processor 0’s clock would be set to 1500, (and not left at its ori-
ginal value of 1000), to reflect the time dependency between
events of the simulation.

9. Performance Results

We now present the performance estimates of the PPP
simulator on a variety of benchmark programs. These results
are the most comprehensive performance analysis of Prolog
programs known to the authors. They consider a wide variety
of Prolog programs, compiled for AND-parallelism, OR-
parallelism, and intelligent backtracking. They also take into
account process creation time, scheduling overhead, and other
factors crucial to any parallel logic programming implementa-
tion.

Our initial performance estimates of a four processor sys-
tem are shown in table 6.

These benchmarks were all taken from {War80], [CIM81],
and the set of programs distributed over the arpanet, with the
exception of cckt4 which was written at Berkeley.

Some programs that appear to be able to exploit AND- or
OR-parallelism do not have an entry in this table. This is
because occasionally a program will create more processes
than the simulator can manage. This is the case, for example,
with the query benchmark and OR-parallelism.

In addition, some entries of the table contain values
greater than 4, even though only four processors are being
simulated. This is due to the effects of intelligent backtrack-
ing, which enhance the performance of Prolog even if only one
processor is utilized.

Finally, it should be noted that with the exception of
con6, the nondeterministic concatenate benchmark, all our pro-
grams compiled for OR-parallelism were written to compute a
single answer to a query, and not all possible solutions. In a
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Expected Speedup of Benchmarks
(4 processors)

prog A (¢} I AO Al [0)4 AOI
dividel0 0.80 «x X X X X X
logld «x X x x x X X
ops8 1.13 x X X X X X
timesl0 0.75 x X x X X X
palin25 1.07 010 x X x X X
qsd  1.57 008 x 0.10 x X X
query 0.95 x X 047 x X. X
conl x X X X X X X
coné  x 037 «x X X X X
hanoi x X X X X X X

ckt4 1.07 122 757 085 10.14 6.68 5.27
mumath x 213 x x X X X
queens 0.69 212 x 201 «x X X
deep_bak x 029 x x b'e X x
envir 0.32 x X X x X X
map x 0.11 «x X X X X
knight x 039 x X X X X

Table 6°

program where all solutions are desired, OR-parallelism is
equivalent to AND-parallelism in the sense that all processes
perform useful work. This in turn leads to larger speedups.
However, we feel that such a use of OR-parallelism is unrealis-
tic; the vast majority of the time the user is interested in one
answer that satisfies a set of constraints, and not all possible
solutions. Thus we have simulated benchmarks that compute
a single answer, and not an entire set.

10. Analysis of Results

We see that even under very idealistic assumptions, most
programs exhibit little speedup. In fact, many run slower
despite their theoretical potential concurrency. This is due to
the creation of processes where the costs of concurrent compu-
tation outweigh the benefits. This indicates an important
point:

The visual inspection of a Prolog program is not enough to
detect useful concurrency.

The decision to execute a piece of code with a separate process
cannot be made by simply looking at the program. It must be
made according to a careful analysis of the costs and benefits
associated with process creation. We are currently construct-
ing a cost/benefit mode! to assist in this area.

3 In this table, the letters A, O, and I refer to compilation for AND-
parallelism, OR-parallelism, and intelligent backtracking respectively. The
letter 'x’ indicates that the given benchmark could not make use of a particu-
lar technique.



10.1. Doubling the Number of Processors

If the number of processors is increased to eight, the

estimated performance is shown in table 7.

Proportion of Total Time: OR
(4 processors)

OR
Expected Speedup of Benchmarks
(8 processors) prog UIN SYS SYN PCR PTR SCH IN idle
palin25 58.5 2.3 0.9 1.5 0.5 3.1 01 331
sd 54.6 3.0 1.0 1.9 0.5 34 04- 352
prog A O I AO Al OI  AOI “oné 350 101 40 57 28 142 00 281
.. cktd 704 1.4 0.0 0.1 0.0 25 00 256
dividel0  1.03  x X x x x x mumath 631 86 27 42 20 113 00 80
logl0  x x x x x x x queens 707 79 28 45 20 108 00 13
_ops8 145 x x x x x x deep_bak 9.8 128 61 103 49 206 00 354
timesl0  1.03  x X x x x x map 462 102 49 106 27 188 00 66
palinz5  1.07 010 x x x x x knight 804 69 14 22 09 81 00 01
gsd 1.68 008 x 0.13 =x X x
query  0.95  x x 071 x x x avg 543 70 27 45 18 103 01 193
conl x X X X X X X
con x 049 x X X X X Table 9
hanoi x X X X x X X
ckt4 107 145 757 1.28 10.14 10.25 10.05
queens 073 389 x 207 x X X Proportion of Total Time: AND
deep_bak x 029 x X x x x (8 processors)
envir 0.56 x X X X X x
map x 011 x b X X x
knight x 076 x X X X x
AND
Table 7 prog UIN SYS SYN PCR PTR SCH IN idle
We see that in most cases the speedup does not increase dividel0 15.5 4.1 1.2 2.0 0.0 59 00 713
significantly; only the ckt4 benchmark shows appreciable ops8 303 6.2 2.3 3.8 0.0 98 00 477
gains. This suggests two possibilities: either the system is so timesl0 16.1 4.8 1.5 2.4 0.0 70 00 682
overwhelmingly saturated with processes that doubling the palin25  15.2 0.5 0.2 0.3 0.0 1.4 00 825
number of processors from four to eight has little effect, or the gsd 26.8 3.7 1.0 1.6 0.0 49 00 620
average number of runnable processes is relatively low. The query 46.7 0.5 1.8 0.0 0.0 33 00 477
results of the next section indicate the latter. cktd 352 0.9 0.4 0.7 0.3 25 06 593
queens 14.6 2.2 11 1.5 0.8 45 11 742
10.2. Breakdowns of Execution Time envir 21.7 286 5.9 9.8 0.0 276 0.0 6.4
Space prevents a complete breakdown of execution time
for all the combinations of AND-parallelism, OR-parallelism, avg 24.7 5.7 L7 24 0.1 74 02 577
and intelligent backtracking. Results for AND- and OR- Table 10
parallelism for four and eight processor simulation runs are
shown below:
Proportion of Total Time: OR
Proportion of Total Time: AND (8 processors)
(4 processors)
OR
AND
. prog UIN SYS SYN PCR PTR SCH IN idle
prog UIN SYS SYN PCR PTR SCH IN idle
palin25 37.3 1.4 0.6 1.0 0.3 20 0.0 574
dividel0 24.7 8.6 1.9 3.2 0.0 94 00 522 gsd 54.9 3.0 1.0 1.9 0.5 34 0.4 350
ops8 345 88 26 43 00 111 00 387 coné 196 46 22 32 16 80 00 608
times10 23.9 9.6 2.2 3.6 0.0 10.4 0.0 50.5 ckt4 59.4 0.5 0.0 0.1 0.0 2.1 0.0 378
palin25 288 1.0 03 05 0.0 27 0.0 666 mumath 530 71 2.3 35 1.7 95 00 229
gsd 425 66 15 25 00 82 00 387 queens 661 73 26 44 19 103 00 7.3
query 467 05 18 00 00 3.3 00 477 deep_bak 68 88 42 71 34 143 00 554
ckt4 352 09 04 07 03 25 06 593 map 462 102 49 106 27 188 00 66
queens 25.2 4.0 1.9 2.7 1.4 8.0 2.0 54.9 knight 80.1 6.8 14 21 0.9 8.1 0.0 0.5
envir 220 297 5.9 9.9 0.0 284 0.0 4.1
avg 47.0 5.5 2.1 3.8 1.4 85 01 315
avg 31.5 78 2.1 3.0 0.2 93 03 459
Table 11

Table 8
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We see that for both types of parallelism, increasing the
number of processors increased the percentage of time that
processors spent idle. This indicates that the benchmarks we
have examined are inherently sequential: they have difficulty
keeping even a small number of processors busy.

10.3. The Effect of Increased Process Creation Time

One of the advantages of the PPP simulator is that the
effect of changing the cost of one fundamental operation can be
examined while others are held constant. For example, if pro-
cess creation time is assumed to take 1000 cycles (a much
more realistic value than the 50 initially assumed), then the
estimated performance of a four processor system is as follows:

Expected Speedup of Benchmarks
(4 processors)

under the following assumptions:

UIN SYS SYN PCR PTR SCH IN
1 1 5 1000 25 50 50
prog A 0 I AO Al [0)1 AOI
divide10 043 «x X X X X x
logl0 X X X X x X x
ops8 052 «x x x X X x
times10 038 «x x X X X X
palin25 094 007 x X X X x
gsd 098 0.06 x 0.07 x X X
query 095 x x 0.20 x X x
conl X b'e x x x X X
con6 X 013 x x X x x
hanoi X X X x X X X
cktd 073 121 1757 066 6.75 645 3.86
mumath X 1.08 x X x X X
queens 023 108 «x 0.67 x X X
deep_bak x 0.04 x X X x X
envir 011 «x X x X X 4
map x 011 x X X X X
knight X 028 x X x X x
Table 12

We see that as expected, performance is reduced,
although not as significantly as one might expect. The
increase in process creation time has a greater effect on OR-
parallel performance than AND-parallel performance. This
agrees with the data of the previous section, which indicates
that programs in the benchmark set that exploited OR-
parallelism spent a slightly higher portion of their execution
time creating processes than AND-parallel programs.

Space prevents further analysis of this and other simula-
tion data. A more extensive study of parallel Prolog perfor-
mance will appear in (Fag87].

15

11. Conclusions

We have presented the instruction set and architecture of
the Aquarius Multiprocessor System, based on the PPP execu-
tion model outlined in [FaD87]. We have also presented the
first detailed simulation resulits of Prolog programs compiled
for AND-parallelism, OR-parallelism, and intelligent back-
tracking.

Our results indicate that most Prolog benchmarks being
written today are not likely to be sped up by parallel process-
ing, due to either their inherent sequentiality, the costs associ-
ated with multiprocessing, or both. In order to effectively util-
ize the processing power of multiprocessors, parallel Prolog
programs must create processes only when benefits are
believed to outweigh costs. For systems with high process
creation overhead, this would imply that relatively few
processes should be created, with each process doing a great
deal of work.

It should be noted that our work tests only the amount of
concurrency recoverable using the PPP execution model.
There may be other execution models that can extract more
concurrency, but at this time no other simulation studies of
this type of execution model are available. In addition, the
PPP is theoretically more powerful than most parallel execu-
tion models for Prolog, supporting restricted AND-parallelism,
OR-parallelism, and intelligent backtracking. Thus it is capa-
ble of extracting major sources of performance improvement in
Prolog. Since a great deal of effort in the past few years has
been spent on parallel execution models for logic languages,
we believe it will be very difficult to develop realistic execution
models that can extract more concurrency than the PPP.

We would caution, however, against making strong gen-
eralizations regarding the efficacy of a parallel Prolog on the
basis of our results. Benchmarks are not natural phenomena;
they are artifacts of intelligence, constructed for a particular
purpose to run on a particular machine. We face a chicken
and egg problem in that parallel Prolog programs that can
solve useful problems using multiprocessing are not likely to
be written until the tools exist to develop and evaluate them.
The existing tools for sequential Prolog program development
(interpreters, compilers, simulators, and sequential processors)
are simply inadequate for the task. Thus the final verdict on
the utility of parallel Prolog systems must wait until explicitly
parallel benchmarks are developed and analyzed on existing
multiprocessor hardware.

12. Future Work

The results presented here are very much work in pro-
gress. Research is continuing in a number of areas, We are
currently investigating the issues involved in implementing
the process kernel efficiently. We are also developing an intel-
ligent compiler for the PPP that can make good decisions con-
cerning the generation of parallel versus sequential code.

In addition, we are studying better ways of managing
memory in the PPP. Allocating separate writable address
spaces for each process in the PPP, while encouraging efficient
processor utilization and permitting the utilization of OR-
parallelism [FaD87], also increases the complexity of memory
management. Assigning one address space per processor, as
Hermenegildo (Her86] and Borgwardt [Bor84] suggest, drasti-
cally simplifies many aspects of the system. It may be possible
to incorporate the desirable memory management properties of
this model into the PPP, to simplify memory management
while maintaining support for OR-parallelism and efficient
processor utilization.
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