
PERFORMANCE STUDIES OF A
PARALLEL PROLOG ARCHITECTURE

Barry S. Fagin
Alvin M. Despain

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

This paper presents a new multiprocessor architecture for
the parallel execution of logic programs, developed as part
of the Aquarius Project. This architecture is designed to
support AND-parallelism, OR-parallelism, and intelligent
backtracking. We present the most comprehensive experi-
mental results available to date on combined AND-
parallelism, OR-parallelism, and intelligent backtracking
in Prolog programs. Simulation results indicate that most
Prolog programs in use today cannot effectively make use
of multiprocessing.

1. Introduction

The Aquarius project is a research effort concerned with
the architectural issues of high performance computation. In
particular, we are focusing on Prolog as the user language of
the system. Previous work has led to the design of a high per-
formance sequential Prolog architecture: the PLM [DDP85].
This paper presents the next phase of the research: an exten-
sion of the sequential architecture to a parallel one. First, we
briefly discuss techniques for improving Prolog performance,
and discuss a rrew execution model for Prolog: the PPP model
(for Parallel Prolog Processor). We show how to extend the
instruction set of the PLM to support the PPP, and present
performance results of the architecture on a variety of bench-
mark programs. We conclude by analyzing the results of our
experiments, and discuss future work.

Throughout this paper, the reader is assumed to be fami-
liar with Prolog. For readers unfamiliar with Prolog, Clocksin
and Mellish's text [ClM81] is an excellent introduction to the
language.

2. Techniques for Improving Prolog Pe r fo rmance

Several techniques have been proposed for improving the
performance of Prolog. Three of the most important are:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1) AND-parallelism
2) OR-parallelism
3) Intelligent backtracking

In this section, we briefly discuss each technique.

2.1. AND-paral le l i sm

AND-parallelism was first suggested by Conery in his
thesis [Con83]. AND-parallelism is the simultaneous solution
of more than one goal in the body of a clause. For example, in
the clause:

parents_of(Ch,M,F) :- mother(Ch,M), father(Ch,F).

the simultaneous solution of the "mother" and "father" goals
would be an example of AND-parallelism.

The chief difficulty with AND-parallelism is the problem
of binding conflicts. If no restrictions are placed on the goals
to be solved in parallel, then it is possible that goals can bind
shared variables to different values. For example, consider the
clause:

tiger(X):- feline(X), carnivorous(X).

If the goals "feline" and "carnivorous" are executed in AND-
parallel fashion, they might bind the variable X to different
values. In addition to the synchronization overhead that this
implies, a consistency check must also be performed, to filter
out the bindings that do not match both goals.

This type of AND-parallelism, in which goals are allowed
to bind shared variables, is called unrestricted AND-
parallelism. Because this type of AND-parallelism entails con-
siderable runtime overhead, most schemes for AND-
parallelism incorporate compile-time analysis or program
annotation to denote which goals produce and consume vari-
able values [Con83], [DeM85]. These kind of schemes, in
which AND-parallel goals execute only if guaranteed not to
bind the same variables, utilize restricted AND-parallelism
[DeG84]. Restricted AND-parallelism, as outlined by DeGroot,
uses both compile-time and run-time checks to determine when
goals can be executed in AND-parallel fashion without binding
conflicts. The PPP employs a slightly narrower version of res-
tricted AND-parallelism, using only compile time analysis to
assist in the recovery of AND-parallelism [ChD85]. However,
as in DeGroot's scheme, goals that run in AND-parallel
fashion are guaranteed exclusive access to the variables they
bind.

2.2. OR-paral le l i sm

OR-parallelism was also identified by Conery as a poten-
tial source of concurrency in Prolog [Con83]. OR-parallelism is
the simultaneous unification of multiple clauses in the pro-
gram with the current goal. For example, in the program:

© 1987 ACM 0084-7495/87/0600-0108500.75
108

next_vertex(X,Y) :- connected(X,Y), ...

connected(i ,2).
connected(I,3).
connected(2,5).

the s imul t aneous examina t ion of all the c lauses for "con-
nected" by the goal "connectedIX,Y)" would be an example of
OR-paral lel ism.

Like AND-para l le l i sm. the principal problem with OR-
paral le l ism is t ha t of mult iple goals b inding shared variables.
Unl ike AND-para l le l i sm, however, compile- t ime analys is is of
no value; OR-parallel goals by their very na t u r e bind shared
variables. Thus any scheme for suppor t ing OR-paral le l ism
mus t include a method for i n su la t ing the b ind ings genera ted
by OR processes from one another .

A grea t deal of research ha s been devoted to solving this
problem. The three ma i n techniques were first proposed in
[CiH83], [Bor84], and [Lin84]. The PPP uses the technique
sugges ted in [Bor84], based on ear ly indicat ions of performance
and the appropr ia teness of the scheme to our imp lemen ta t i on
of Prolog. For a more detai led explana t ion of OR-paral le l i sm
in the PPP, the reader is referred to [FAD87].

2.3. Intelligent Backtracking

When a Prolog goal fails, it 'backtracks ' by r e s u m i n g exe-
cution at the most recent point in the computa t ion where
a l ternat ive c lauses existed to ma tch the cur ren t goal. Such
points are referred to as 'choice points ' . However, the most
recent choice point may not genera te b indings re levan t to the
original cause of failure. For example , consider the program:

c(X,Y) :- a(X), b(Y).

and the query "c(X,3)?". If the goal "b(3)" has no solution,
backt racking will generate ano the r solution to "a(X/". But
this will not affect the failure of b(3); fu r the r solut ions to a(X)
will be genera ted unnecessar i ly .

The ideal solution is to backt rack not to the most recent
choice point, bu t to the most recent choice point t ha t can pro-
duce bindings re levant to the cause of failure. This is called
" intel l igent backtracking", and was first sugges ted by Pere i ra
et. al. [PeP80]. Subs tan t ia l research has since been devoted
to inte l l igent backtracking. Our work in th is a rea builds on
tha t of Chang and Despain [ChD85], [Cha85]. C h a n g intro-
duces the concept of "semi- in te l l igent backtracking" , in which
backtracking occurs to the mos t recent choice point tha t can
genera te b indings appropriate to the cause of fai lure if such a
choice point was placed on the s tack by one of the goals in the
cur rent clause. In Chang ' s scheme, the in te l l igent backtrack-
ing possibilities are de te rmined at compile t ime, and are not
examined across clause b6undaries; hence the t e rm "semi-
intell igent".

We have extended the work of C h a n g and Despain to
support in te l l igent backt racking in a paral lel execution
envi ronment . The necessary work is re la t ively simple; provi-
sions m u s t mere ly be made for ki l l ing and r e s t a r t ing paral lel
processes as a resu l t of goal failure. This will be discussed in
future work. For a more detai led discuss ion of semi- in te l l igent
backt racking and paral lel execution, the reader is referred to
[Cha85].

3. The P P P E x e c u t i o n M o d e l

Several execut ion models have been proposed for paral lel
logic p rogramming , including the AND/OR process model
[Con83], the "s tandard" OR-paral lel model [CiH83], [Cra85],
and the s tack-based AND-paral le l model [Bor84], [Her86]. The
execution model of the PPP is discussed in [FaD87]. in which
the PPP execut ion model is compared to o ther ex is t ing models.
Here, we will briefly outline the execut ion model of the PPP to
prepare the reader for the sections t ha t follow.

3.1. Processes and Messages

Like other execut ion models for paral lel Prolog, the PPP
conta ins two k inds of processes: AND processes, and OR
processes. An AND process corresponds in the obvious way to
a goal in the body of a clause, while OR processes correspond
to the clauses of a procedure. As their name suggests , AND
processes execute in AND-paral le l fashion and are the m e a n s
by which AND-para l le l i sm is exploited. Similarly, OR
processes execute in OR-parallel fashion and are the m e a n s by
which OR paral le l ism is utilized.

Processes communica te with each other th rough mes-
sages. There are four basics messages in the PPP: SUCCESS
(SUC), FAIL, NEXT ANSWER /NA), and KILL. SUC is sent
from a child to a paren t to report the success of its original
goal. FAIL is sen{ from child to paren t to report failure. NA
is sent from paren t to child to induce backtracking, while
KILL is sent from paren t to child to t e rmina te execution.
Messages s en t from child to pa ren t (SUC and FAIL) are inlbr-
mative, while those sent from paren t to child (NA and KILL)
are imperative.

3.2. Process Behavior

Unlike other execution models, AND and OR processes in
the PPP execute in an identical manner . The PPP
differentiates between AND and OR processes when they send
messages . The behavior of a process upon receiving a message
is shown in table 1:

msg condition action
SUC from OR if paren t ready, push bindings

and continue; else put child to sleep
SUC from AND if s ibl ings have finished

continue; else record success and
put child to sleep

FAIL from OR if pa ren t wai t ing on this child,
search for nex t child tha t has not
failed. If none, backtrack. If
nex t child has not yet succeeded,
go to sleep, o therwise push bindings
and continue. If pa ren t not wai t ing
on th is child, record failure.
Te rmina t e child process.

FAIL from AND KILL all descendan ts of paren t
created af ter child, backt rack

NA backt rack

KILL kill descendan ts and t e rmina t e execut ion

Table 1

109

4. The Instruction Set Architecture of the P P P

Previous work on the Aquarius Project has resulted in
the development of a high-performance architecture for Prolog:
the PLM [DDP85]. Our work continues the work of Dobry by
extending the PLM architecture to support the features of the
PPP execution model. In this section we show how this exten-
sion is done.

The PLM is a special-purpose architecture for Prolog. Its
instruction set is derived from the Prolog Instruction Set of
Warren [War83]; a detailed description appears in [DPD84].
and [DDP85]. The new instructions necessary are those associ-
ated with AND-parallelism. OR-parallelism, and intelligent
backtracking. This paper will discuss the instructions neces-
sary for AND and OR parallelism. The new instructions
necessary to incorporate intelligent backtracking into the PLM
were introduced in [ChD85], and are not discussed here. The
extensions necessary to extend Chang's intelligent backtrack-
ing algorithm to a parallel execution environment were rela-
tively simple, and will appear in future work.

The original PLM instruction set appears in [DDP85].
The new instructions are shown in Table 2.

instruction function used for
i_allocate begins code for clauses AND-par, I.B.

that use intelligent
backtracking or
AND-parallelism

call_p creates AND process AND-par
wait synchronizes execution of AND-par

parent with AND children

try_p creates first OR process OR-par
in a procedure

try_me_else_p " OR-par

retry_p creates second through OR-par
next-to-last OR processes
in a procedure

retry_me_else_p " OR-par

trust_p creates last OR process OR-par
in a procedure, puts
process to sleep

trust_me_else_p " OR-par

Table 2

"i_allocate" allocates a special environment on the run-
time stack; it is used for clauses that can take advantage of
AND-parallelism or intelligent backtracking.

"call_p" builds the data object on the stack necessary for
indicating the presence of an AND process to the parent, and
creates an AND-process for a particular goal.

"wait" is used to ensure that a process does not continue
execution until all of a given group of AND-children have
instantiated their variables. When the wait instruction is exe-
cuted, the process examines a synchronization counter. If this
counter is zero, it continues execution. If it is positive, the
process goes to sleep. If other processes are available then this
process may be swapped out.

"try_p" builds a data object on the stack used for control-
ling a group of OR processes, and creates an OR process for the
first clause in a procedure. "retry_p" creates OR processes for
the second through next-to-last clauses in a procedure.
"trust_p" creates an OR process for the last clause in the pro-
cedure, and then puts the executing process to sleep.

"try_me_else_p", "retry_me_else_p", and
"trust_me_else_p" are very similar to "try_p", "retry_p", and
"trust_p". They differ only in where the OR processes they
create begin execution and where execution continues in the
current process. Since these instructions are included only as
an aid to compilation, they are not essential to the complete-
ness of the instruction set, and are not discussed further here.

5. Compi l ing Prolog for the PPP: An Example

We now show a small example of the compilation of a
Prolog program. For the sake of illustration, we generate code
that employs parallelism whenever possible, ignoring efficiency
considerations. We will see that parallel code is only slightly
larger than sequential code.

As an illustration of PPP compilation, we consider the
following example [FAD87]:

main :- a(X), b(Y), c(X,Y).

a(1).
a(2).

b(1).
b(2).
b(3).

c(1,2).

5.1. Compilation for AND-paral le l ism

If the main clause of our example were compiled into
sequential PLM code, the result would be:

procedure main/0
allocate 2
put_variable Y2,X1
call a/1,2
put_variable Y1,X1
call b/1,2
put_unsafe_value Y2,X1
put_unsafe_value Y1,X2
deallocate
execute c/2

In the PPP, however, static analysis of the program reveals
that the goals a(X) and b(Y) can be solved in parallel. Thus
the compiler generates the following code:

procedure main/0
* i_allocate 2,_BT,_JT,2

put_variable Y2,XI
* call_p a/1,1,1

put_variable YI,X1
* call_p b/1,2,1
* wait 1

put_unsafe_value Y2,X1
put_unsafe_value Y1,X2
deallocate
execute c/2

_BT:
_JT:
* 2
* 0

* changed from sequential code

!10

Note that "allocate" has changed to "i_allocate", since the
clause is now utilizing AND-parallelism. The call instructions
have been changed to "call_p" instructions, and a wait instruc-
tion has been added to synchronize the parent with its chil-
dren. A join table has been added to the clause at label _JT.
Its only entry is 2, since two children must decrement it before
the parent can succeed; the 0 is included only to indicate the
end of the table to the assembler. Finally, a "backtrack table"
[ChD85] could be inserted by the compiler at label "_BT", if
intelligent backtracking were to be utilized.

5.2. Compi l i ng for OR-pa ra l l e l i sm

Next, consider the code for the 'a' procedure (the code for
'b' is similar). If compiled for sequential execution, the result-
ing code would be:

procedure a/1
switch_on_term _614,fail,fail

try _617
retry _619
trust _620

_617:
get_constant &I,X1
proceed

_619:
get_constant &2.Xl
proceed

_620:
get_constant &3,X1
proceed

_614:
(Indexing instructions follow.
These are used if the procedure is called
with a constant argument)

If we compile for OR-parallel execution, we obtain very
similar code:

procedure a/1
switch_on_term _614,fail,fail

* try_p 3,_617
* retry_p 2,_619
* trust_p 3,_620
_617:

get_constant &I ,Xl
proceed

_619:
get_constant &2,Xl
proceed

_620:
get_constant &3,X1
proceed

_614:

Note that the decisions to generate AND-parallel code for
clauses and OR-parallel code for procedures can be made
independently of one another; parallel clause code can be exe-
cuted with sequential procedure code. and vice versa.

6. The P r o c e s s T a b l e a n d the P P P P r o c e s s Kernel

While we have presented the instruction set of the PPP,
many functions of the system remain to be discussed. For
example, in order to achieve efficient processor utilization, we
require a system-wide data structure that contains information
about all processes in the system. In addition, we have not
specified how the process behavior specified in table 1 is
achieved. In this section we examine these two ideas more
closely.

6.1. P r o c e s s e s in the P P P

A PPP process is a virtual PLM machine [DDP85]. This
includes all registers in the PLM register set. Each process
has its own writable address space, where its stack, heap, trail,

and PDL are located t. A process can read from the address
space of any of its ancestors, but with rare exceptions can

write only to its own 2.

6.2. The P r o c e s s Table

The PPP mainta ins a process table in main memory,
which all processors can examine and update. Each entry in
the process table is a PPP process. All processes currently in
the system exist in the process table. In this way, the table
can be examined for runnable processes when any processor
becomes available.

6.3. T h e P P P P r o c e s s Kerne l

The actions denoted in table I are the responsibility of
the PPP process kernel. The modules currently defined in the
process kernel are shown in table 4.

We note that while the messages of the PPP model are a
convenient abstraction, it is not necessary to actually send and
receive messages in a PPP implementa t ion It is the action
associated with each message that is important. Thus the pro-
cess kernel does not deal with messages at all. Instead, it con-
tains the routines that implement the semantic actions associ-
ated with the receipt of a given message by a given process.
In effect, the modules of the process kernel serve to fill in the
gaps in the implementation of the PPP left by the PLM
instruction set; they are responsible for all actions of a process
that affect other processes.

* changed from sequential code

A try_p instruction replaces the try, which will create the
data structure on the runt ime stack needed to coordinate the
transmission of bindings from a batch of OR-processes. It will
also create an OR process to begin execution at label _617.
The retry_p and trust_p instructions create the other two OR
processes.

1 For readers not familiar with these terms, these are the four memory
areas of the PLM. A more detailed description of them is found in [DDP851.

2 The exceptions occur when children update certain data structures in
their parent's address space. For amore detailed description, see [FaD871.

III

PPP Process Kernel Modules
name function

~ROCESS_SUCCESS() take appropriate action
when process succeeds

PROCESS_FAILUREO take appropriate action
when process fails

INDUCE_BACKTRACKING{) cause child to fail

PROCESS_CUT() take appropriate action
when process executes 'cut'

KILL_PROCESS() kill indicated process

FORK(I create new process
DIE() t e rmina t e process
NEWPROCESS() scan process table for

runnab le processes, ass ign
process to processor and
cont inue

SLEEP0 put cu r ren t process
to sleep, call NEWPROCESS()

Table 4

7. The Aquarius Multiproeessor

One of the goals of the Aqua r i u s Project is the construc-
tion of a h igh performance mul t iprocessor sys t em t ha t suppor ts
the PPP execut ion model. A d i a g r a m of th is sys t em is shown
in figure 1:

Synchronizat ion
Memory, ,

8 °°@an J',
P r o c e s s o r ~

Cache E

Main Meml

,q E
Sl ++-,- IZ

EO E

Crossbar

Figure 1: The Aquarius Multiproeessor

Each PPP is a separa te Paral le l Prolog Processor, suit-
ably modified to execute the PPP ins t ruc t ion set. Each PPP is
connected to two memory sys tems . The lower memory sys tem
consists of a cache for each processor, a crossbar, and s ix teen
memory modules. The upper sys t em consis ts of a coherent
cache and a synchronizat ion memory , used to achieve atomic
operat ions on shared data. Cache coherency a lgo r i thms and
synchronizat ion on the Aqua r i u s Mult iprocessor Sys tem are
cur ren t ly active a reas of research [BID86], bu t are not dis-
cussed in this paper.

The heap, stack, trail, and PDL for each process are par t
of the lower sys tem, as is the process table. Each processor
executes a PPP process, and can execute the rou t ines of the
process kernel to create new processes, take the appropr ia te
action upon success and failure, and so forth.

8, T h e Simulator

In this section we discuss the s imula to r used to obta in
our performance resul ts .

The PPP s imula to r is an ex tens ion of the PLM s imula to r
of Dobry [Deb85] In addit ion to model ing all sequen t i a l PLM
ins t ruct ions , the PPP s imula to r includes the new ins t ruc t ions
of the PPP and the rou t ines of the process kernel .

In a t t emp t ing to m e a s u r e PPP performance, we were
faced with the problem of eva lua t i ng a sys tem con ta in ing com-
ponents in va ry ing s tages of development . The processors
themse lves are based on the PLM, so the execut ion t imes of
sequent ia l PLM ins t ruc t ions are known from [DDP85]. In
addition, the new iffstructions of the PPP can be accura te ly
es t imated, based on a knowledge of their act ions they perform
and the PLM datapa th . There are, however, two sources of
unce r t a in ty in model ing the PPP: the memory sys tem architec-
ture, and the opera t ing sys tem.

8.1. A p p r o x i m a t i o n s in t he P P P S i m u l a t o r

Current ly , the memory sys tem archi tec ture of the
Aquar ius mult iprocessor is under development , so we have not
a t tempted to model it. All reads and writes are a s s u m e d to
execute in one cycle; contention for memory modules, the
degradat ion of cache performance due to context swapping, and
other fea tures of memory sys tem behavior are not modeled.
However, since such model ing would reduce the performance
es t ima tes even fur ther , th is s t r e n g t h e n s our conclusions
regard ing the inabil i ty of most Prolog b e n c h m a r k to effectively
exploit mul t iprocess ing.

In addition, the opera t ing sys tem software for Aq u a r iu s
cur ren t ly exists only as a collection of C rout ines in the PPP
simulator . Thus t iming es t ima tes for sys t em calls are difficult
to make. To address th is problem, we identify cer ta in opera-
tions as fundamenta l , supplying their associated execut ion
t imes as pa rame te r s to the s imulat ion. The s imula to r can
then use these va lues to es t imate performance.

The operat ions we identified as f u n d a m e n t a l and the
va lues used in our s imula t ion runs are shown below:

operation #cycles

process creat ion 50
process t e rmina t ion 25
invoke scheduler 50
in t e r rup t r u n n i n g process 50
sync m e m access 5

Table 5

Process creat ion in the PPP consis ts of the ini t ia l izat ion
of a v i r tua l PLM machine , the a s s i g n m e n t of a portion of the
address space, and the allocation of a slot in the process table.
Process t e rmina t ion involves re leas ing the m e m o r y of a pro-
cess and freeing up its slot in the table. An invocation of the
scheduler consis ts of f inding a runnab le process and loading it
on an avai lable processor. Processors m a y in t e r rup t one
ano ther on ins t ruc t ion boundaries ; when th is occurs it is
a s sumed to take 50 clock cycles. Final ly, an access to the syn-
chronizat ion memory is a s s u m e d to take 5 clock cycles.

112

We note tha t our assumpt ions are qui te idealist ic. How-
ever, this s t reng thens our conclusion tha t most Prolog pro-
grams being wr i t ten today cannot effectively ut i l ize con-
currency, owing to the costs involved. We shal l see evidence of
this shortly.

8.2. Timing Estimation

The PPP s imula tor is an event-dr iven mul t iprocessor
simulator . An a rb i t ra ry number of processors ¢16 by default)
may be s imulated. The s imula t ion is in te r leaved at the PPP
instruct ion level: one processor is s imula ted for one PPP
instruction, then the next, and so forth.

The s imula to r ma in ta ins a clock for each processor. Each
t ime a rout ine is called, the clock of the processor being simu-
lated is incremented an appropr ia te number of cycles. The
s imula tor also keeps t rack of the number of fundamenta l
operations executed on each s imula t ion step, and increments
the clock appropr ia te ly each t ime an operat ion is executed.

Frequent ly , processors wil l be come idle a t the same t ime
as others become busy. When a processor becomes idle, this is
recorded in the simulator . When the processor becomes busy
again, its clock is set equal to the clock of the processor
responsible for wak ing it up. This is clone to ensure correct
t iming es t ima tes for processors tha t become idle. Suppose, for
example, t ha t a t the beg inn ing of a s imula t ion run processor 0
were to run for 1000 cycles and then create a process to run on
previously idle processor 1. Processor l ' s clock would then
begin at 1000. Suppose fur ther tha t processor 0 then becomes
idle, while processor 1 runs for 500 cycles before performing an
action tha t causes processor 0 to wake up. Upon wak ing up,
processor O's clock would be set to 1500, (and not left a t its ori-
g inal value of 1000), to reflect the t ime dependency between
events of the s imulat ion.

9. Performance Results

We now present the performance es t ima tes of the PPP
s imula to r on a var ie ty of benchmark programs. These resul t s
are the most comprehensive performance ana lys i s of Prolog
programs known to the authors. They consider a wide va r i e ty
of Prolog programs, compiled for AND-para l le l i sm, OR-
para l le l i sm, and in te l l igen t back t rack ing . They also t ake into
account process creat ion time, schedul ing overhead, and other
factors crucial to any para l le l logic p rog ramming implementa -
tion.

Our in i t i a l performance e s t ima tes of a four processor sys-
tem are shown in table 6.

These benchmarks were all t aken from [WarS0], [CIMS1],
and the set of programs d is t r ibuted over the arpanet , wi th the
exception of cckt4 which was wr i t t en at Berkeley.

Some programs tha t appear to be able to exploi t AND- or
OR-paral le l i sm do not have an en t ry in this table. This is
because occasionally a program will create more processes
than the s imula tor can manage. This is the case, for example,
wi th the query benchmark and OR-paral le l i sm.

In addition, some entr ies of the table contain va lues
grea ter than 4, even though only four processors are being
s imulated. This is due to the effects of i n t e l l i gen t backt rack-
ing, which enhance the performance of Prolog even if only one
processor is utilized.

Final ly , i t should be noted tha t wi th the exception of
con6, the nondeterminis t ic concatenate benchmark , al l our pro-
g rams compiled for OR-para l le l i sm were wr i t t en to compute a
s ingle answer to a query, and not al l possible solutions. In a

Expected Speedup of Benchmarks
(4 processors)

prog A O I AO AI OI AO[

divide10 0.80 x x x x x x
logl0 x x x x x x x
ops8 1.13 x x x x x x

t imes l0 0.75 x x x x x x
palin25 1.07 0.10 x x x x x

qsd 1.57 0.08 x 0.10 x x x
query 0.95 x x 0.47 x x. x

c o n l x x x x x x x

con6 x 0.37 x x x x x
hanoi x x x x x x x

ckt4 1.07 1.22 7.57 0.85 10.14 6.68 5.27
mumath x 2.13 x x x x x

queens 0.69 2.12 x 2.01 x x x
deep_bak x 0.29 x x x x x

envir 0.32 x x x x x x
map x 0.11 x x x x x

kn igh t x 0.39 x x x x x

Table 63

program where all solutions are desired, OR-paral le l i sm is
equivalent to AND-para l le l i sm in the sense tha t al l processes
perform useful work. This in turn leads to la rger speedups.
However, we feel tha t such a use of OR-para l le l i sm is unreal is-
tic; the vas t majori ty of the t ime the user is in teres ted in one
answer tha t satisfies a set of constraints , and not al l possible
solutions. Thus we have s imula ted benchmarks tha t compute
a single answer, and not an ent i re set.

10. A n a l y s i s of R e s u l t s

We see tha t even under very ideal is t ic assumptions , most
programs exhibi t l i t t le speedup. In fact, many run slower
despite their theoret ical potent ia l concurrency. This is due to
the creation of processes where the costs of concurrent compu-
ta t ion outweigh the benefits. This indicates an impor tan t
point:

The visual inspection of a Prolog program is not enough to
detect useful concurrency.

The decision to execute a piece of code wi th a separa te process
cannot be made by s imply looking at the program. It mus t be
made according to a careful ana lys i s of the costs and benefits
associated with process creation. We are cu r ren t ly construct-
ing a cost/benefit model to ass i s t in th is area.

:3 In this table, the letters A, O, and I refer to compilation for AND-
parallelism, OR-parallelism, and intelligent backtracking respectively. The
letter 'x' indicates that the given benchmark could not make use of a particu-
lar technique.

113

10.1. D o u b l i n g the N u m b e r of P r o c e s s o r s

If the number of processors is increased to eight , the
es t imated performance is shown in table 7.

Expected Speedup of Benchmarks
(8 processors)

prog A O I AO AI OI AOI

divide10 1.03 x x x x x x
log10 x x x x x x x
ops8 1.45 x x x x x x

t imes l0 1.03 x x x x x x
palin25 1.07 0.10 x x x x x

qsd 1.68 0.08 x 0.13 x x x
query 0.95 x x 0.71 x x x

conl x x x x x x x
con6 x 0.49 x x x x x

hanoi x x x x x x x
ckt4 1.07 1.45 7.57 1.28 10.14 10.25 10.05

queens 0.73 3.89 x 2.07 x x x
deep_bak x 0.29 x x x x x

envir 0.56 x x x x x x
map x 0.11 x x x x x

kn igh t x 0.76 x x x x x

Table 7

We see t h a t in most cases the speedup does not increase
significantly; only the ckt4 benchmark shows appreciable
gains. This sugges ts two possibil i t ies: e i ther the sys tem is so
overwhelmingly sa tu ra ted with processes t h a t doubl ing the
number of processors from four to e igh t has l i t t l e effect, or the
average number of runnab le processes is r e la t ive ly low. The
resul t s of the next section indicate the lat ter .

10.2. B r e a k d o w n s of E x e c u t i o n T i m e

Space prevents a complete breakdown of execut ion t ime
for al l the combinat ions of AND-para l le l i sm, OR~paral lel ism,
and in t e l l i gen t backt racking . Resul ts for AND- and OR-
para l l e l i sm for four and e ight processor s imu la t ion runs are
shown below:

Proportion of Total Time: AND
(4 processors)

Proportion of Total Time: OR
(4 processors)

OR

prog UIN SYS SYN PCR PTR SCH IN idle

pal in25 58.5 2.3 0.9 1.5 0.5 3.1 0.1 33.1
qsd 54.6 3.0 1.0 1.9 0.5 3.4 0.4 ~ 35.2
con6 35.0 10.1 4.0 5.7 2.8 14.2 0.0 28.1
ckt4 70.4 1.4 0.0 0.1 0.0 2.5 0.0 25.6

m u m a t h 63.1 8.6 2.7 4.2 2.0 11.3 0.0 8.0
queens 70.7 7.9 2.8 4.5 2.0 10.8 0.0 1.3

deep_bak 9.8 12.8 6.1 10.3 4.9 20.6 0.0 35.4
map 46.2 10.2 4.9 10.6 2.7 18.8 0.0 6.6

k n i g h t 80.4 6.9 1.4 2.2 0.9 8.1 0.0 0.1

avg 54.3 7.0 2.7 4.5 1.8 10.3 0.1 19.3

Table 9

Proportion of Total Time: AND
(8 processors)

AND

prog UIN SYS SYN PCR PTR SCH IN idle

divide10 15.5 4.1 1.2 2.0 0.0 5.9 0.0 71.3
ops8 30.3 6.2 2.3 3.8 0.0 9.8 0.0 47.7

t i m e s l 0 16.1 4.8 1.5 2.4 0.0 7.0 0.0 68.2
palin25 15.2 0.5 0.2 0.3 0.0 1.4 0.0 82.5

qsd 26.8 3.7 1.0 1.6 0.0 4.9 0.0 62.0
query 46.7 0.5 1.8 0.0 0.0 3.3 0.0 47.7

ckt4 35.2 0.9 0.4 0.7 0.3 2.5 0.6 59.3
queens 14.6 2.2 1.1 1.5 0.8 4.5 1.1 74.2
envir 21.7 28.6 5.9 9.8 0.0 27.6 0.0 6.4

avg 24.7 5.7 1.7 2.4 0.1 7.4 0.2 57.7

Table 10

Proportion of Total Time: OR
(8 processors)

AND

prog UIN SYS SYN PCR PTR SCH IN idle

divide10 24.7 8.6 1.9 3.2 0.0 9.4 0.0 52.2
ops8 34.5 8.8 2.6 4.3 0.0 11.1 0.0 38.7

t i m e s l 0 23.9 9.6 2.2 3.6 0.0 10.4 0.0 50.5
pal in25 28.8 1.0 0.3 0.5 0.0 2.7 0.0 66.6

qsd 42.5 6.6 1.5 2.5 0.0 8.2 0.0 38.7
query 46.7 0.5 1.8 0.0 0.0 3.3 0.0 47.7

ckt4 35.2 0.9 0.4 0.7 0.3 2.5 0.6 59.3
queens 25.2 4.0 1.9 2.7 1.4 8.0 2.0 54.9

envir 22.0 29.7 5.9 9.9 0.0 28.4 0.0 4.1

avg 31.5 7.8 2.1 3.0 0.2 9.3 0.3 45.9

Table 8

OR

prog UIN SYS SYN PCR PTR SCH IN idle

palin25 37.3 1.4 0.6 1.0 0.3 2.0 0.0 57.4
qsd 54.9 3.0 1.0 1.9 0.5 3.4 0.4 35.0
con6 19.6 4.6 2.2 3.2 1.6 8.0 0.0 60.8
ckt4 59.4 0.5 0.0 0.1 0.0 2.1 0.0 37.8

m u m a t h 53.0 7.1 2.3 3.5 1.7 9.5 0.0 22.9
queens 66.1 7.3 2.6 4.4 1.9 10.3 0.0 7.3

deep_bak 6.8 8.8 4.2 7.1 3.4 14.3 0.0 55.4
map 46.2 10.2 4.9 10.6 2.7 18.8 0.0 6.6

kn igh t 80.1 6.8 1.4 2.1 0.9 8.1 0.0 0.5

avg 47.0 5.5 2.1 3.8 1.4 8.5 0.1 31.5

Table 11

114

We see that for both types of parallelism, increasing the
number of processors increased the percentage of time that
processors spent idle. This indicates that the benchmarks we
have examined are inherently sequential: they have difficulty
keeping even a small number of processors busy.

10.3. The Effect of I n c r e a s e d P r o c e s s Crea t ion Time

One of the advantages of the PPP simulator is that the
effect of changing the cost of one fundamental operation can be
examined while others are held constant. For example, if pro-
cess creation time is assumed to take 1000 cycles la much
more realistic value than the 50 initially assumed), then the
estimated performance of a four processor system is as follows:

Expected Speedup of Benchmarks
(4 processors)

under the following assumptions:

UIN SYS SYN PCR PTR SCH IN]
1 1 5 1000 25 50 50 J

prog A O I AO AI OI AOI

divide10 0.43 x x x x x x
log10 x x x x x x x
ops8 0.52 x x x x x x
t imesl0 0.38 x x x x x x
palin25 0.94 0.07 x x x x x
qsd 0.98 0.06 x 0.07 x x x
query 0.95 x x 0.20 x x x
conl x x x x x x x
con6 x 0.13 x x x x x
hanoi x x x x x x x
ckt4 0.73 1.21 7.57 0.66 6.75 6.45 3.86
mumath x 1.08 x x x x x
queens 0.23 1.08 x 0.67 x x x
deep_bak x 0.04 x x x x x
envir 0.11 x x x x x x
map x 0.11 x x x x x
knight x 0,28 x x x x x

Table 12

We see that as expected, performance is reduced,
although not as significantly as one might expect. The
increase in process creation time has a greater effect on OR-
parallel performance than AND-parallel performance. This
agrees with the data of the previous sectiom which indicates
that programs in the benchmark set that exploited OR-
parallelism spent a slightly higher portion of their execution
time creating processes than AND-parallel programs.

Space prevents further analysis of this and other simula-
tion data. A more extensive study of parallel Prolog perfor-
mance will appear in [Fag87].

11. Conclus ions

We have presented the instruction set and architecture of
the Aquarius Multiprocessor System, based on the PPP execu-
tion model outlined in [FaD87]. We have also presented the
first detailed simulation results of Prolog programs compiled
for AND-parallelism, OR-parallelism, and intelligent back-
tracking.

Our results indicate that most Prolog benchmarks being
written today are not likely to be sped up by parallel process-
ing, due to either their inherent sequentiality, the costs associ-
ated with multiprocessing, or both. In order to effectively util-
ize the processing power of multiprocessors, parallel Prolog
programs must create processes only when benefits are
believed to outweigh costs. For systems with high process
creation overhead, this would imply that relatively few
processes should be created, with each process doing a great
deal of work.

It should be noted that our work tests only the amount of
concurrency recoverable using the PPP execution model.
There may be other execution models that can extract more
concurrency, but at this time no other simulation studies of
this type of execution model are available. In addition, the
PPP is theoretically more powerful than most parallel execu-
tion models for Prolog, supporting restricted AND-parallelism,
OR-parallelism, and intelligent backtracking. Thus it is capa-
ble of extracting major sources of performance improvement in
Prolog. Since a great deal of effort in the past few years has
been spent on parallel execution models for logic languages,
we believe it will be very difficult to develop realistic execution
models that can extract more concurrency than the PPP.

We would caution, however, against making strong gen-
eralizations regarding the efficacy of a parallel Prolog on the
basis of our results. Benchmarks are not natural phenomena;
they are artifacts of intelligence, constructed for a part icular
purpose to run on a part icular machine. We face a chicken
and egg problem in that parallel Prolog programs that can
solve useful problems using multiprocessing are not likely to
be written until the tools exist to develop and evaluate them.
The existing tools for sequential Prolog program development
(interpreters, compilers, simulators, and sequential processors)
are simply inadequate for the task. Thus the final verdict on
the utility of parallel Prolog systems must wait until explicitly
parallel benchmarks are developed and analyzed on existing
multiprocessor hardware.

12. F u t u r e Work

The results presented here are very much work in pro-
gress. Research is continuing in a number of areas. We are
currently investigating the issues involved in implementing
the process kernel efficiently. We are also developing an intel-
ligent compiler for the PPP that can make good decisions con-
cerning the generation of parallel versus sequential code.

In addition, we are studying better ways of managing
memory in the PPP. Allocating separate writable address
spaces for each process in the PPP, while encouraging efficient
processor utilization and permitt ing the utilization of OR-
parallelism [FAD87], also increases the complexity of memory
management. Assigning one address space per processor, as
Hermenegildo [Her86] and Borgwardt [Bor84] suggest, drasti-
cally simplifies many aspects of the system. It may be possible
to incorporate the desirable memory management properties of
this model into the PPP, to simplify memory management
while maintaining support for OR-parallelism and efficient
processor utilization.

115

13. Acknowledgement s

Work on the PPP execution model was begun by Tep
Dobry, who was also the principal architect of the PLM. The
authors are especially appreciative of his contributions. We
thank the referees for their careful review of the paper and
constructive comments. We are grateful for the interaction
with the other principal investigators of the Aquarius effort:
Professors Yale N. Patt and Vason P. Srini. Finally, we have
benefited considerably from discussions with the other
members of Aquarius: Phil Bitar, Bill Bush, Mike Carlton,
Chien Chen, Wayne Citrin, Ron David, Jeff Gee, Bruce Hol-
mer, Wen-Mei Hwu, Rick McGeer, Tam Nguyen, Ashok
Singhal, Jerric Tam, Jim Testa, Herve' Touati, and Robert
Yung.

This work was sponsored by the Defense Advanced
Research Projects Agency, Arpa Order No. 4871, and is moni-
tored by Space and Naval Warfare Systems Command under
Contract No. N00039-84-C-0089.

14. References

[BID86] P. Bitar and A. Despain. "Multiprocessor Cache
Synchronization", Proceedings o/" the 13th
International Symposi~m on Computer Architecture,
Tokyo, Japan, Jun. 1986, 424-433.

[Bor84] P. Borgwardt, "Parallel Prolog Using Stack
Segments on Shared-Memory Multiprocessors",
Proceedings of the 1984 Symposium on Logic
Programming, Feb. 1984, 2-11.

J. H. Chang, "High Performance Execution of
Prolog Programs Based on a Static Data
Dependency Analysis", Ph.D. Thesis, Berkeley, Oct.
1985. UCB/Computer Science Dpt. Research Report
No. 86/283.

J. H. Chang and A. M. Despain, "Semi-Intelligent
Backtracking of Prolog Based on A Static Data
Dependency Analysis", Proceedings of the Third
International Logic Programming Conference, 1985.

A. Ciepielewski and S. Haridi, "A Formal Model For
OR-Parallel Execution of Logic Programs",
Proceedings of Information Processing '83, 1983,
299-305.

W. F. Clocksin and C. F. Mellish, Programming in
Prolog, Springer-Verlag, New York, NY, 1981.

J. S. Conery, The AND~OR Model for Parallel
Interpretation of Logic Programs, Dept. of
Information and Computer Science, University of
California, Irvine, 1983.

J. Crammond, "A Comparative Study of Unification
Algorithms for OR-Parallel Execution of Logic
Languages", IEEE Transactions on Computers C-34
(Oct. 1985), 911-917, IEEE.

D. DeGroot, "Restricted AND-Parallelism".
Proceedings of the International Conference on Fifth
Generation Computer Systems, 1984, 471-478.

P. Dembinski and J. Maluszynski, "AND-
Parallelism with Intelligent Backtracking for
Annotated Logic Programs", Proceedings of the 1985
Symposium on Logic Programming, Jul. 1985, 29-
38.

T. P. Dobry, Y. N. Patt and A. M. Despain, "Design
Decisions Influencing the Microarchitecture for a
Prolog Machine", Proceedings of the 17th
International Symposium on Microarchitecture, Oct.
1984.

[Cha85]

[ChD85]

[CiH83]

[CIM81]

[Con83]

[CraB5]

[DeG84]

[DeM85]

[DPD84]

[Dob85]

[DDP85]

[FPD85]

[FaD87]

[Fag87]

[Her86]

[Lin84]

[PEPS0]

[War80]

[War83]

T. Dobry, PLM Simulator Reference Manual, 1985.

T. P. Dobry, A. M. Despain and Y. N. Patt,
"Performance Studies of a Prolog Machine
Architecture", Proceedings of the 12th Annual
International Symposium on Computer Architecture,
Jun. 1985, 180-190.

B. Fagin, Y. Patt, A. Despain and V. Srini,
"Compiling Prolog Into Microcode: A Case Study
Using the NCR-32000", Proceedings of the 18th
International Symposium on Microarchitecture,
1985, 79-88.

B. Fagin and A. Despain, Combining AND and OR
Parallelism in Logic Programs, (to appearl, May
1987.

B. Fagin, A Parallel Execution Model /br Prolog,
University of California, Berkeley, CA, Jun 1987.
Ph.D. Thesis (in progressl.

M. Hermenegildo, "Efficient Management of
Backtracking in AND-Parallelism", Proceedings of
the 3rd International Conference on Logic
Programming, London, 1986.

G. Lindstrom, "OR-Parallelism on Applicative
Architectures", Proceedings of the Second
International Logic Programming Conference, Jul.
1984, 159-170.

L. M. Pereira and A. Porto, An Interpreter of Logic
Programs Using Selective Backtracking, Universade
Nova de Lisboa, Jul. 1980. Report 3/80, Dept. de
Informatica.

D. H. D. Warren, "Logic Programming and
Compiler Writing", Software -- Practice and
Experience 10 (Feb. 1980), 9%126.

D. H. D. Warren, An Abstract Prolog Instruction
Set, Computer Science and Technology Division,
SRI, Menlo Park, CA, Oct. 1983. Technical Note
309, Artificial Intelligence Center.

! !6

