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ABSTRACT 

This paper presents a new multiprocessor architecture for 
the parallel execution of logic programs, developed as part 
of the Aquarius Project. This architecture is designed to 
support AND-parallelism, OR-parallelism, and intelligent 
backtracking. We present the most comprehensive experi- 
mental results available to date on combined AND- 
parallelism, OR-parallelism, and intelligent backtracking 
in Prolog programs. Simulation results indicate that most 
Prolog programs in use today cannot effectively make use 
of multiprocessing. 

1. Introduction 

The Aquarius project is a research effort concerned with 
the architectural issues of high performance computation. In 
particular, we are focusing on Prolog as the user language of 
the system. Previous work has led to the design of a high per- 
formance sequential Prolog architecture: the PLM [DDP85]. 
This paper presents the next phase of the research: an exten- 
sion of the sequential architecture to a parallel one. First, we 
briefly discuss techniques for improving Prolog performance, 
and discuss a rrew execution model for Prolog: the PPP model 
(for Parallel Prolog Processor). We show how to extend the 
instruction set of the PLM to support the PPP, and present 
performance results of the architecture on a variety of bench- 
mark programs. We conclude by analyzing the results of our 
experiments, and discuss future work. 

Throughout this paper, the reader is assumed to be fami- 
liar with Prolog. For readers unfamiliar with Prolog, Clocksin 
and Mellish's text [ClM81] is an excellent introduction to the 
language. 

2. Techniques  for Improving  Prolog  Pe r fo rmance  

Several techniques have been proposed for improving the 
performance of Prolog. Three of the most important are: 
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1) AND-parallelism 
2) OR-parallelism 
3) Intelligent backtracking 

In this section, we briefly discuss each technique. 

2.1. AND-paral le l i sm 

AND-parallelism was first suggested by Conery in his 
thesis [Con83]. AND-parallelism is the simultaneous solution 
of more than one goal in the body of a clause. For example, in 
the clause: 

parents_of(Ch,M,F) :- mother(Ch,M), father(Ch,F). 

the simultaneous solution of the "mother" and "father" goals 
would be an example of AND-parallelism. 

The chief difficulty with AND-parallelism is the problem 
of binding conflicts. If no restrictions are placed on the goals 
to be solved in parallel, then it is possible that goals can bind 
shared variables to different values. For example, consider the 
clause: 

tiger(X):- feline(X), carnivorous(X). 

If the goals "feline" and "carnivorous" are executed in AND- 
parallel fashion, they might bind the variable X to different 
values. In addition to the synchronization overhead that  this 
implies, a consistency check must also be performed, to filter 
out the bindings that do not match both goals. 

This type of AND-parallelism, in which goals are allowed 
to bind shared variables, is called unrestricted AND- 
parallelism. Because this type of AND-parallelism entails con- 
siderable runtime overhead, most schemes for AND- 
parallelism incorporate compile-time analysis or program 
annotation to denote which goals produce and consume vari- 
able values [Con83], [DeM85]. These kind of schemes, in 
which AND-parallel goals execute only if guaranteed not to 
bind the same variables, utilize restricted AND-parallelism 
[DeG84]. Restricted AND-parallelism, as outlined by DeGroot, 
uses both compile-time and run-time checks to determine when 
goals can be executed in AND-parallel fashion without binding 
conflicts. The PPP employs a slightly narrower version of res- 
tricted AND-parallelism, using only compile time analysis to 
assist in the recovery of AND-parallelism [ChD85]. However, 
as in DeGroot's scheme, goals that run in AND-parallel 
fashion are guaranteed exclusive access to the variables they 
bind. 

2.2. OR-paral le l i sm 

OR-parallelism was also identified by Conery as a poten- 
tial source of concurrency in Prolog [Con83]. OR-parallelism is 
the simultaneous unification of multiple clauses in the pro- 
gram with the current goal. For example, in the program: 
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next_vertex(X,Y) :- connected(X,Y), ... 

connected(i ,2).  
connected(I,3).  
connected(2,5). 

the  s imul t aneous  examina t ion  of all the  c lauses  for "con- 
nected" by the goal "connectedIX,Y)" would be an example  of 
OR-paral lel ism. 

Like AND-para l le l i sm.  the  principal  problem with OR- 
paral le l ism is t ha t  of mult iple  goals b inding shared  variables.  
Unl ike  AND-para l le l i sm,  however,  compile- t ime analys is  is of 
no value; OR-parallel  goals by their  very na t u r e  bind shared  
variables.  Thus  any  scheme for suppor t ing  OR-paral le l ism 
mus t  include a method for i n su la t ing  the  b ind ings  genera ted  
by OR processes from one another .  

A grea t  deal of research ha s  been devoted to solving this  
problem. The three  ma i n  techniques  were first proposed in 
[CiH83], [Bor84], and  [Lin84]. The PPP uses  the  technique  
sugges ted  in [Bor84], based on ear ly indicat ions  of performance 
and the appropr ia teness  of the  scheme to our  imp lemen ta t i on  
of Prolog. For a more detai led explana t ion  of OR-paral le l i sm 
in the PPP, the  reader  is referred to [FAD87]. 

2.3. Intelligent Backtracking 

When a Prolog goal fails, it 'backtracks '  by r e s u m i n g  exe- 
cution at  the  most  recent point in the computa t ion  where 
a l ternat ive  c lauses  existed to ma tch  the  cur ren t  goal. Such 
points are referred to as 'choice points ' .  However,  the most  
recent  choice point  may  not genera te  b indings  re levan t  to the  
original cause of failure. For example ,  consider the  program: 

c(X,Y) :- a(X), b(Y). 

and the query "c(X,3)?". If the  goal "b(3)" has  no solution, 
backt racking  will generate  ano the r  solution to "a(X/". But  
this  will not  affect the  failure of b(3); fu r the r  solut ions to a(X) 
will be genera ted  unnecessar i ly .  

The ideal solution is to backt rack  not  to the  most  recent  
choice point, bu t  to the  most  recent  choice point t ha t  can pro- 
duce bindings re levant  to the cause  of failure.  This  is called 
" intel l igent  backtracking",  and was first sugges ted  by Pere i ra  
et. al. [PeP80]. Subs tan t ia l  research  has  since been devoted 
to inte l l igent  backtracking.  Our  work in th is  a rea  builds on 
tha t  of Chang  and  Despain [ChD85], [Cha85]. C h a n g  intro- 
duces the  concept of "semi- in te l l igent  backtracking" ,  in which 
backtracking occurs to the  mos t  recent  choice point  tha t  can 
genera te  b indings  appropriate to the  cause  of fai lure if such a 
choice point was placed on the  s tack by one of the goals in the  
cur rent  clause. In Chang ' s  scheme,  the  in te l l igent  backtrack- 
ing possibilities are  de te rmined  at  compile t ime,  and are not  
examined  across clause b6undaries;  hence the  t e rm "semi- 
intell igent".  

We have  extended the work of C h a n g  and Despain to 
support  in te l l igent  backt racking  in a paral lel  execution 
envi ronment .  The necessary work is re la t ively  simple; provi- 
sions m u s t  mere ly  be made for ki l l ing and r e s t a r t ing  paral lel  
processes as a resu l t  of goal failure.  This  will be discussed in 
future  work. For a more detai led discuss ion of semi- in te l l igent  
backt racking  and  paral lel  execution,  the  reader  is referred to 
[Cha85]. 

3. The  P P P  E x e c u t i o n  M o d e l  

Several  execut ion models have  been proposed for paral lel  
logic p rogramming ,  including the  AND/OR process model 
[Con83], the  "s tandard"  OR-paral lel  model [CiH83], [Cra85], 
and  the  s tack-based AND-paral le l  model [Bor84], [Her86]. The 
execution model of the PPP is discussed in [FaD87]. in which 
the  PPP execut ion model is compared to o ther  ex is t ing  models. 
Here, we will briefly outline the  execut ion model of the  PPP to 
prepare the  reader  for the sections t ha t  follow. 

3.1. Processes  and Messages 

Like other  execut ion models  for paral lel  Prolog, the  PPP  
conta ins  two k inds  of processes: AND processes,  and  OR 
processes. An AND process corresponds in the  obvious way to 
a goal in the  body of a clause, while OR processes correspond 
to the  clauses of a procedure. As their  name  suggests ,  AND 
processes execute in AND-paral le l  fashion and are the m e a n s  
by which AND-para l le l i sm is exploited. Similarly,  OR 
processes execute in OR-parallel  fashion and are the  m e a n s  by 
which OR paral le l ism is utilized. 

Processes communica te  with each other  th rough  mes- 
sages. There are four basics messages  in the  PPP: SUCCESS 
(SUC), FAIL, NEXT ANSWER /NA), and KILL. SUC is sent  
from a child to a paren t  to report  the success of its original  
goal. FAIL is sen{ from child to paren t  to report  failure. NA 
is sent  from paren t  to child to induce backtracking,  while 
KILL is sent  from paren t  to child to t e rmina te  execution. 
Messages  s en t  from child to pa ren t  (SUC and FAIL) are inlbr- 
mative, while those sent  from paren t  to child (NA and KILL) 
are imperative. 

3.2. Process Behavior 

Unlike other  execution models,  AND and OR processes in 
the PPP  execute in an  identical  manner .  The PPP  
differentiates  between AND and OR processes when they send 
messages .  The behavior  of a process upon receiving a message  
is shown in table 1: 

msg  condition action 
SUC from OR if paren t  ready, push  bindings  

and continue; else put  child to sleep 
SUC from AND if s ibl ings have  finished 

continue;  else record success and 
put  child to sleep 

FAIL from OR if pa ren t  wai t ing  on this  child, 
search for nex t  child tha t  has  not 
failed. If none,  backtrack.  If 
nex t  child has  not  yet  succeeded, 
go to sleep, o therwise  push  bindings  
and  continue.  If pa ren t  not  wai t ing  
on th is  child, record failure.  
Te rmina t e  child process. 

FAIL from AND KILL all descendan ts  of paren t  
created af ter  child, backt rack  

NA backt rack  

KILL kill descendan ts  and  t e rmina t e  execut ion 

Table 1 
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4. The Instruction Set Architecture of the P P P  

Previous work on the Aquarius Project has resulted in 
the development of a high-performance architecture for Prolog: 
the PLM [DDP85]. Our work continues the work of Dobry by 
extending the PLM architecture to support the features of the 
PPP execution model. In this section we show how this exten- 
sion is done. 

The PLM is a special-purpose architecture for Prolog. Its 
instruction set is derived from the Prolog Instruction Set of 
Warren [War83]; a detailed description appears in [DPD84]. 
and [DDP85]. The new instructions necessary are those associ- 
ated with AND-parallelism. OR-parallelism, and intelligent 
backtracking. This paper will discuss the instructions neces- 
sary for AND and OR parallelism. The new instructions 
necessary to incorporate intelligent backtracking into the PLM 
were introduced in [ChD85], and are not discussed here. The 
extensions necessary to extend Chang's intelligent backtrack- 
ing algorithm to a parallel execution environment were rela- 
tively simple, and will appear in future work. 

The original PLM instruction set appears in [DDP85]. 
The new instructions are shown in Table 2. 

instruction function used for 
i_allocate begins code for clauses AND-par, I.B. 

that  use intelligent 
backtracking or 
AND-parallelism 

call_p creates AND process AND-par 
wait synchronizes execution of AND-par 

parent with AND children 

try_p creates first OR process OR-par 
in a procedure 

try_me_else_p " OR-par 

retry_p creates second through OR-par 
next-to-last OR processes 
in a procedure 

retry_me_else_p " OR-par 

trust_p creates last OR process OR-par 
in a procedure, puts 
process to sleep 

trust_me_else_p " OR-par 

Table 2 

"i_allocate" allocates a special environment on the run- 
time stack; it is used for clauses that  can take advantage of 
AND-parallelism or intelligent backtracking. 

"call_p" builds the data object on the stack necessary for 
indicating the presence of an AND process to the parent, and 
creates an AND-process for a particular goal. 

"wait" is used to ensure that  a process does not continue 
execution until all of a given group of AND-children have 
instantiated their variables. When the wait instruction is exe- 
cuted, the process examines a synchronization counter. If this 
counter is zero, it continues execution. If it is positive, the 
process goes to sleep. If other processes are available then this 
process may be swapped out. 

"try_p" builds a data object on the stack used for control- 
ling a group of OR processes, and creates an OR process for the 
first clause in a procedure. "retry_p" creates OR processes for 
the second through next-to-last clauses in a procedure. 
"trust_p" creates an OR process for the last clause in the pro- 
cedure, and then puts the executing process to sleep. 

"try_me_else_p", "retry_me_else_p", and 
"trust_me_else_p" are very similar to "try_p", "retry_p", and 
"trust_p". They differ only in where the OR processes they 
create begin execution and where execution continues in the 
current process. Since these instructions are included only as 
an aid to compilation, they are not essential to the complete- 
ness of the instruction set, and are not discussed further here. 

5. Compi l ing  Prolog for the PPP: An Example  

We now show a small example of the compilation of a 
Prolog program. For the sake of illustration, we generate code 
that  employs parallelism whenever possible, ignoring efficiency 
considerations. We will see that parallel code is only slightly 
larger than sequential code. 

As an illustration of PPP compilation, we consider the 
following example [FAD87]: 

main :- a(X), b(Y), c(X,Y). 

a(1). 
a(2). 

b(1). 
b(2). 
b(3). 

c(1,2). 

5.1. Compilation for AND-paral le l ism 

If the main clause of our example were compiled into 
sequential PLM code, the result would be: 

procedure main/0 
allocate 2 
put_variable Y2,X1 
call a/1,2 
put_variable Y1,X1 
call b/1,2 
put_unsafe_value Y2,X1 
put_unsafe_value Y1,X2 
deallocate 
execute c/2 

In the PPP, however, static analysis of the program reveals 
that the goals a(X) and b(Y) can be solved in parallel. Thus 
the compiler generates the following code: 

procedure main/0 
* i_allocate 2,_BT,_JT,2 

put_variable Y2,XI 
* call_p a/1,1,1 

put_variable YI,X1 
* call_p b/1,2,1 
* wait 1 

put_unsafe_value Y2,X1 
put_unsafe_value Y1,X2 
deallocate 
execute c/2 

_BT: 
_JT: 
* 2 
* 0 

* changed from sequential code 
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Note that  "allocate" has changed to "i_allocate", since the 
clause is now utilizing AND-parallelism. The call instructions 
have been changed to "call_p" instructions, and a wait instruc- 
tion has been added to synchronize the parent  with its chil- 
dren. A join table has been added to the clause at label _JT. 
Its only entry is 2, since two children must  decrement it before 
the parent  can succeed; the 0 is included only to indicate the 
end of the table to the assembler. Finally, a "backtrack table" 
[ChD85] could be inserted by the compiler at label "_BT", if 
intelligent backtracking were to be utilized. 

5.2. Compi l i ng  for  OR-pa ra l l e l i sm 

Next, consider the code for the 'a' procedure (the code for 
'b' is similar). If compiled for sequential  execution, the result- 
ing code would be: 

procedure a/1 
switch_on_term _614,fail,fail 

try _617 
retry _619 
trust  _620 

_617: 
get_constant &I,X1 
proceed 

_619: 
get_constant &2.Xl 
proceed 

_620: 
get_constant &3,X1 
proceed 

_614: 
# (Indexing instructions follow. 
# These are used if the procedure is called 
# with a constant argument)  

If we compile for OR-parallel execution, we obtain very 
similar code: 

procedure a/1 
switch_on_term _614,fail,fail 

* try_p 3,_617 
* retry_p 2,_619 
* trust_p 3,_620 
_617: 

get_constant &I ,Xl  
proceed 

_619: 
get_constant &2,Xl 
proceed 

_620: 
get_constant &3,X1 
proceed 

_614: 

Note that the decisions to generate AND-parallel code for 
clauses and OR-parallel code for procedures can be made 
independently of one another; parallel clause code can be exe- 
cuted with sequential procedure code. and vice versa. 

6. The  P r o c e s s  T a b l e  a n d  the P P P  P r o c e s s  Kernel  

While we have presented the instruction set of the PPP, 
many functions of the system remain to be discussed. For 
example, in order to achieve efficient processor utilization, we 
require a system-wide data structure that contains information 
about all processes in the system. In addition, we have not 
specified how the process behavior specified in table 1 is 
achieved. In this section we examine these two ideas more 
closely. 

6.1. P r o c e s s e s  in the  P P P  

A PPP process is a virtual PLM machine [DDP85]. This 
includes all registers in the PLM register set. Each process 
has its own writable address space, where its stack, heap, trail, 

and PDL are located t. A process can read from the address 
space of any of its ancestors, but with rare exceptions can 

write only to its own 2. 

6.2. The  P r o c e s s  Table  

The PPP mainta ins  a process table in main memory, 
which all processors can examine and update. Each entry in 
the process table is a PPP process. All processes currently in 
the system exist in the process table. In this way, the table 
can be examined for runnable  processes when any processor 
becomes available. 

6.3. T h e  P P P  P r o c e s s  Kerne l  

The actions denoted in table I are the responsibility of 
the PPP process kernel. The modules currently defined in the 
process kernel are shown in table 4. 

We note that  while the messages of the PPP model are a 
convenient abstraction, it is not necessary to actually send and 
receive messages in a PPP implementa t ion  It is the action 
associated with each message that  is important.  Thus the pro- 
cess kernel does not deal with messages at all. Instead, it con- 
tains the routines that  implement  the semantic actions associ- 
ated with the receipt of a given message by a given process. 
In effect, the modules of the process kernel serve to fill in the 
gaps in the implementation of the PPP left by the PLM 
instruction set; they are responsible for all actions of a process 
that  affect other processes. 

* changed from sequential code 

A try_p instruction replaces the try, which will create the 
data structure on the runt ime stack needed to coordinate the 
transmission of bindings from a batch of OR-processes. It will 
also create an OR process to begin execution at label _617. 
The retry_p and trust_p instructions create the other two OR 
processes. 

1 For readers not familiar with these terms, these are the four memory 
areas of the PLM. A more detailed description of them is found in [DDP851. 

2 The exceptions occur when children update certain data structures in 
their parent's address space. For amore detailed description, see [FaD871. 

III 



PPP Process Kernel  Modules 
name  function 

~ROCESS_SUCCESS()  take appropriate  action 
when process succeeds 

PROCESS_FAILUREO take appropriate  action 
when process fails 

INDUCE_BACKTRACKING{)  cause child to fail 

PROCESS_CUT() take appropriate  action 
when process executes  'cut'  

KILL_PROCESS() kill indicated process 

FORK(I create new process 
DIE() t e rmina t e  process 
NEWPROCESS()  scan process table for 

runnab le  processes, ass ign  
process to processor and 
cont inue 

SLEEP0 put  cu r ren t  process 
to sleep, call NEWPROCESS()  

Table 4 

7. The Aquarius Multiproeessor 

One of the  goals of the  Aqua r i u s  Project is the  construc- 
tion of a h igh  performance mul t iprocessor  sys t em t ha t  suppor ts  
the  PPP  execut ion model. A d i a g r a m  of th is  sys t em is shown 
in figure 1: 

Synchronizat ion 
Memory,  , 

8 °°@an J', 
P r o c e s s o r ~  

Cache E 

Main Meml 

,q E 
Sl ++-,- IZ 

EO E 

Crossbar  

Figure 1: The Aquarius Multiproeessor 

Each PPP is a separa te  Paral le l  Prolog Processor,  suit-  
ably modified to execute  the  PPP ins t ruc t ion  set. Each  PPP  is 
connected to two memory  sys tems .  The  lower memory  sys tem 
consists of a cache for each processor, a crossbar,  and  s ix teen 
memory  modules.  The upper sys t em consis ts  of a coherent  
cache and a synchronizat ion memory ,  used  to achieve atomic 
operat ions on shared  data.  Cache coherency a lgo r i thms  and  
synchronizat ion on the  Aqua r i u s  Mult iprocessor  Sys tem are 
cur ren t ly  active a reas  of research  [BID86], bu t  are  not  dis- 
cussed in this paper. 

The heap, stack, trail,  and PDL for each process are  par t  
of the lower sys tem,  as is the process table. Each processor 
executes  a PPP  process, and  can execute  the  rou t ines  of the  
process kernel  to create new processes,  take  the appropr ia te  
action upon success and  failure,  and so forth. 

8, T h e  Simulator 

In this  section we discuss the  s imula to r  used to obta in  
our performance resul ts .  

The PPP s imula to r  is an  ex tens ion  of the PLM s imula to r  
of Dobry [Deb85] In addit ion to model ing  all sequen t i a l  PLM 
ins t ruct ions ,  the  PPP  s imula to r  includes  the  new ins t ruc t ions  
of the  PPP  and the rou t ines  of the  process kernel .  

In a t t emp t ing  to m e a s u r e  PPP  performance,  we were 
faced with the  problem of eva lua t i ng  a sys tem con ta in ing  com- 
ponents  in va ry ing  s tages  of development .  The processors 
themse lves  are  based on the  PLM, so the  execut ion t imes  of 
sequent ia l  PLM ins t ruc t ions  are known from [DDP85]. In 
addition, the  new iffstructions of the PPP  can be accura te ly  
es t imated,  based on a knowledge of their  act ions they perform 
and the PLM datapa th .  There are, however,  two sources of 
unce r t a in ty  in model ing the  PPP: the  memory  sys tem architec- 
ture, and the opera t ing  sys tem.  

8.1. A p p r o x i m a t i o n s  in t he  P P P  S i m u l a t o r  

Current ly ,  the memory  sys tem archi tec ture  of the  
Aquar ius  mult iprocessor  is under  development ,  so we have  not  
a t tempted  to model it. All reads and  writes are  a s s u m e d  to 
execute in one cycle; contention for memory  modules,  the  
degradat ion of cache performance due to context  swapping,  and  
other  fea tures  of memory  sys tem behavior  are not  modeled. 
However, since such model ing  would reduce the  performance 
es t ima tes  even fur ther ,  th is  s t r e n g t h e n s  our conclusions 
regard ing  the  inabil i ty of most  Prolog b e n c h m a r k  to effectively 
exploit mul t iprocess ing.  

In addition, the  opera t ing  sys tem software for Aq u a r iu s  
cur ren t ly  exists  only as a collection of C rout ines  in the  PPP  
simulator .  Thus  t iming  es t ima tes  for sys t em calls are  difficult 
to make.  To address  th is  problem, we identify cer ta in  opera- 
tions as fundamenta l ,  supplying their  associated execut ion 
t imes  as pa rame te r s  to the  s imulat ion.  The  s imula to r  can 
then  use  these  va lues  to es t imate  performance.  

The operat ions we identified as f u n d a m e n t a l  and  the  
va lues  used in our s imula t ion  runs  are shown below: 

operation #cycles  

process creat ion 50 
process t e rmina t ion  25 
invoke scheduler  50 
in t e r rup t  r u n n i n g  process 50 
sync m e m  access 5 

Table 5 

Process creat ion in the  PPP consis ts  of the  ini t ia l izat ion 
of a v i r tua l  PLM machine ,  the  a s s i g n m e n t  of a portion of the  
address  space, and  the  allocation of a slot in the  process table. 
Process t e rmina t ion  involves re leas ing  the  m e m o r y  of a pro- 
cess and freeing up its slot in the  table. An invocation of the  
scheduler  consis ts  of f inding a runnab le  process and  loading it 
on an avai lable  processor. Processors m a y  in t e r rup t  one 
ano ther  on ins t ruc t ion  boundaries ;  when  th is  occurs it  is 
a s sumed  to take  50 clock cycles. Final ly,  an  access to the  syn- 
chronizat ion memory  is a s s u m e d  to take  5 clock cycles. 

112 



We note tha t  our assumpt ions  are qui te  idealist ic.  How- 
ever, this  s t reng thens  our conclusion tha t  most Prolog pro- 
grams being wr i t ten  today cannot  effectively ut i l ize con- 
currency, owing to the costs involved. We shal l  see evidence of 
this  shortly. 

8.2. Timing Estimation 

The PPP s imula tor  is an event-dr iven mul t iprocessor  
simulator .  An a rb i t ra ry  number  of processors ¢16 by default) 
may be s imulated.  The s imula t ion  is in te r leaved  at  the PPP 
instruct ion level: one processor is s imula ted  for one PPP 
instruction,  then the next, and so forth. 

The s imula to r  ma in ta ins  a clock for each processor. Each 
t ime a rout ine is called, the clock of the processor being simu- 
lated is incremented an appropr ia te  number  of cycles. The 
s imula tor  also keeps t rack of the number  of fundamenta l  
operations executed on each s imula t ion  step, and increments  
the clock appropr ia te ly  each t ime an operat ion is executed. 

Frequent ly ,  processors wil l  be come idle a t  the same t ime 
as others become busy. When a processor becomes idle, this  is 
recorded in the simulator .  When the processor becomes busy 
again,  its clock is set equal  to the clock of the processor 
responsible for wak ing  it  up. This is clone to ensure  correct 
t iming  es t ima tes  for processors tha t  become idle. Suppose, for 
example,  t ha t  a t  the beg inn ing  of a s imula t ion  run  processor 0 
were to run for 1000 cycles and then create  a process to run on 
previously idle processor 1. Processor l ' s  clock would then 
begin at  1000. Suppose fur ther  tha t  processor 0 then  becomes 
idle, while processor 1 runs for 500 cycles before performing an 
action tha t  causes processor 0 to wake up. Upon wak ing  up, 
processor O's clock would be set to 1500, (and not left  a t  its ori- 
g inal  value of 1000), to reflect the t ime dependency between 
events  of the s imulat ion.  

9. Performance Results 

We now present  the performance es t ima tes  of the PPP 
s imula to r  on a var ie ty  of benchmark  programs. These resul t s  
are the most  comprehensive performance ana lys i s  of Prolog 
programs known to the authors.  They consider a wide va r i e ty  
of Prolog programs,  compiled for AND-para l le l i sm,  OR- 
para l le l i sm,  and in te l l igen t  back t rack ing .  They also t ake  into 
account process creat ion time, schedul ing overhead,  and other 
factors crucial  to any para l le l  logic p rog ramming  implementa -  
tion. 

Our in i t i a l  performance e s t ima tes  of a four processor sys- 
tem are shown in table 6. 

These benchmarks  were all  t aken  from [WarS0], [CIMS1], 
and the set of programs d is t r ibuted  over the arpanet ,  wi th  the 
exception of cckt4 which was wr i t t en  at  Berkeley.  

Some programs tha t  appear  to be able to exploi t  AND- or 
OR-paral le l i sm do not have an en t ry  in this  table. This is 
because occasionally a program will  create  more processes 
than  the s imula tor  can manage.  This is the case, for example,  
wi th  the query benchmark  and OR-paral le l i sm.  

In addition, some entr ies  of the table  contain va lues  
grea ter  than  4, even though only four processors are being 
s imulated.  This  is due to the effects of i n t e l l i gen t  backt rack-  
ing, which enhance the performance of Prolog even if  only one 
processor is utilized. 

Final ly ,  i t  should be noted tha t  wi th  the  exception of 
con6, the nondeterminis t ic  concatenate  benchmark ,  al l  our pro- 
g rams  compiled for OR-para l le l i sm were wr i t t en  to compute a 
s ingle  answer  to a query,  and not al l  possible solutions. In a 

Expected Speedup of Benchmarks  
(4 processors) 

prog A O I AO AI OI AO[ 

divide10 0.80 x x x x x x 
logl0 x x x x x x x 
ops8 1.13 x x x x x x 

t imes l0  0.75 x x x x x x 
palin25 1.07 0.10 x x x x x 

qsd 1.57 0.08 x 0.10 x x x 
query 0.95 x x 0.47 x x. x 

c o n l  x x x x x x x 

con6 x 0.37 x x x x x 
hanoi x x x x x x x 

ckt4 1.07 1.22 7.57 0.85 10.14 6.68 5.27 
mumath  x 2.13 x x x x x 

queens 0.69 2.12 x 2.01 x x x 
deep_bak x 0.29 x x x x x 

envir  0.32 x x x x x x 
map x 0.11 x x x x x 

kn igh t  x 0.39 x x x x x 

Table  63 

program where all solutions are desired, OR-paral le l i sm is 
equivalent  to AND-para l le l i sm in the sense tha t  al l  processes 
perform useful work. This in turn  leads to la rger  speedups. 
However, we feel tha t  such a use of OR-para l le l i sm is unreal is-  
tic; the vas t  majori ty of the t ime the user is in teres ted  in one 
answer  tha t  satisfies a set of constraints ,  and not al l  possible 
solutions. Thus we have s imula ted  benchmarks  tha t  compute 
a single answer,  and not an ent i re  set. 

10. A n a l y s i s  of  R e s u l t s  

We see tha t  even under  very ideal is t ic  assumptions ,  most  
programs exhibi t  l i t t le  speedup. In fact, many  run slower 
despite their  theoret ical  potent ia l  concurrency. This is due to 
the creation of processes where the costs of concurrent  compu- 
ta t ion outweigh the benefits. This indicates  an impor tan t  
point: 

The visual inspection of  a Prolog program is not enough to 
detect useful concurrency. 

The decision to execute a piece of code wi th  a separa te  process 
cannot  be made by s imply looking at  the program. It  mus t  be 
made according to a careful ana lys i s  of the costs and benefits 
associated with process creation.  We are cu r ren t ly  construct- 
ing a cost/benefit model to ass i s t  in th is  area.  

:3 In this table, the letters A, O, and I refer to compilation for AND- 
parallelism, OR-parallelism, and intelligent backtracking respectively. The 
letter 'x' indicates that the given benchmark could not make use of a particu- 
lar technique. 
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10.1. D o u b l i n g  the  N u m b e r  of  P r o c e s s o r s  

If the number  of processors is increased to eight ,  the 
es t imated  performance is shown in table 7. 

Expected Speedup of Benchmarks  
(8 processors) 

prog A O I AO AI OI AOI 

divide10 1.03 x x x x x x 
log10 x x x x x x x 
ops8 1.45 x x x x x x 

t imes l0  1.03 x x x x x x 
palin25 1.07 0.10 x x x x x 

qsd 1.68 0.08 x 0.13 x x x 
query 0.95 x x 0.71 x x x 

conl x x x x x x x 
con6 x 0.49 x x x x x 

hanoi x x x x x x x 
ckt4 1.07 1.45 7.57 1.28 10.14 10.25 10.05 

queens 0.73 3.89 x 2.07 x x x 
deep_bak x 0.29 x x x x x 

envir  0.56 x x x x x x 
map x 0.11 x x x x x 

kn igh t  x 0.76 x x x x x 

Table 7 

We see t h a t  in most cases the speedup does not increase 
significantly;  only the ckt4 benchmark  shows appreciable  
gains.  This sugges ts  two possibil i t ies:  e i ther  the sys tem is so 
overwhelmingly  sa tu ra ted  with processes t h a t  doubl ing the 
number  of processors from four to e igh t  has  l i t t l e  effect, or the 
average number  of runnab le  processes is r e la t ive ly  low. The 
resul t s  of the next  section indicate  the lat ter .  

10.2. B r e a k d o w n s  of  E x e c u t i o n  T i m e  

Space prevents  a complete breakdown of execut ion t ime 
for al l  the combinat ions  of AND-para l le l i sm,  OR~paral lel ism, 
and in t e l l i gen t  backt racking .  Resul ts  for AND- and OR- 
para l l e l i sm for four and e ight  processor s imu la t ion  runs  are  
shown below: 

Proportion of Total Time: AND 
(4 processors) 

Proportion of Total Time: OR 
(4 processors) 

OR 

prog UIN SYS SYN PCR PTR SCH IN idle 

pal in25 58.5 2.3 0.9 1.5 0.5 3.1 0.1 33.1 
qsd 54.6 3.0 1.0 1.9 0.5 3.4 0.4 ~ 35.2 
con6 35.0 10.1 4.0 5.7 2.8 14.2 0.0 28.1 
ckt4 70.4 1.4 0.0 0.1 0.0 2.5 0.0 25.6 

m u m a t h  63.1 8.6 2.7 4.2 2.0 11.3 0.0 8.0 
queens  70.7 7.9 2.8 4.5 2.0 10.8 0.0 1.3 

deep_bak 9.8 12.8 6.1 10.3 4.9 20.6 0.0 35.4 
map 46.2 10.2 4.9 10.6 2.7 18.8 0.0 6.6 

k n i g h t  80.4 6.9 1.4 2.2 0.9 8.1 0.0 0.1 

avg 54.3 7.0 2.7 4.5 1.8 10.3 0.1 19.3 

Table  9 

Proportion of Total  Time: AND 
(8 processors) 

AND 

prog UIN SYS SYN PCR PTR SCH IN idle 

divide10 15.5 4.1 1.2 2.0 0.0 5.9 0.0 71.3 
ops8 30.3 6.2 2.3 3.8 0.0 9.8 0.0 47.7 

t i m e s l 0  16.1 4.8 1.5 2.4 0.0 7.0 0.0 68.2 
palin25 15.2 0.5 0.2 0.3 0.0 1.4 0.0 82.5 

qsd 26.8 3.7 1.0 1.6 0.0 4.9 0.0 62.0 
query 46.7 0.5 1.8 0.0 0.0 3.3 0.0 47.7 

ckt4 35.2 0.9 0.4 0.7 0.3 2.5 0.6 59.3 
queens 14.6 2.2 1.1 1.5 0.8 4.5 1.1 74.2 
envir  21.7 28.6 5.9 9.8 0.0 27.6 0.0 6.4 

avg 24.7 5.7 1.7 2.4 0.1 7.4 0.2 57.7 

Table 10 

Proportion of Total Time: OR 
(8 processors) 

AND 

prog UIN SYS SYN PCR PTR SCH IN idle 

divide10 24.7 8.6 1.9 3.2 0.0 9.4 0.0 52.2 
ops8 34.5 8.8 2.6 4.3 0.0 11.1 0.0 38.7 

t i m e s l 0  23.9 9.6 2.2 3.6 0.0 10.4 0.0 50.5 
pal in25 28.8 1.0 0.3 0.5 0.0 2.7 0.0 66.6 

qsd 42.5 6.6 1.5 2.5 0.0 8.2 0.0 38.7 
query  46.7 0.5 1.8 0.0 0.0 3.3 0.0 47.7 

ckt4 35.2 0.9 0.4 0.7 0.3 2.5 0.6 59.3 
queens 25.2 4.0 1.9 2.7 1.4 8.0 2.0 54.9 

envir  22.0 29.7 5.9 9.9 0.0 28.4 0.0 4.1 

avg 31.5 7.8 2.1 3.0 0.2 9.3 0.3 45.9 

Table 8 

OR 

prog UIN SYS SYN PCR PTR SCH IN idle 

palin25 37.3 1.4 0.6 1.0 0.3 2.0 0.0 57.4 
qsd 54.9 3.0 1.0 1.9 0.5 3.4 0.4 35.0 
con6 19.6 4.6 2.2 3.2 1.6 8.0 0.0 60.8 
ckt4 59.4 0.5 0.0 0.1 0.0 2.1 0.0 37.8 

m u m a t h  53.0 7.1 2.3 3.5 1.7 9.5 0.0 22.9 
queens 66.1 7.3 2.6 4.4 1.9 10.3 0.0 7.3 

deep_bak 6.8 8.8 4.2 7.1 3.4 14.3 0.0 55.4 
map 46.2 10.2 4.9 10.6 2.7 18.8 0.0 6.6 

kn igh t  80.1 6.8 1.4 2.1 0.9 8.1 0.0 0.5 

avg 47.0 5.5 2.1 3.8 1.4 8.5 0.1 31.5 

Table 11 
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We see that for both types of parallelism, increasing the 
number of processors increased the percentage of time that  
processors spent idle. This indicates that the benchmarks we 
have examined are inherently sequential: they have difficulty 
keeping even a small number  of processors busy. 

10.3. The Effect of I n c r e a s e d  P r o c e s s  Crea t ion  Time 

One of the advantages of the PPP simulator is that  the 
effect of changing the cost of one fundamental  operation can be 
examined while others are held constant. For example, if pro- 
cess creation time is assumed to take 1000 cycles la much 
more realistic value than the 50 initially assumed), then the 
estimated performance of a four processor system is as follows: 

Expected Speedup of Benchmarks 
(4 processors) 

under the following assumptions: 

UIN SYS SYN PCR PTR SCH IN ] 
1 1 5 1000 25 50 50 J 

prog A O I AO AI OI AOI 

divide10 0.43 x x x x x x 
log10 x x x x x x x 
ops8 0.52 x x x x x x 
t imesl0 0.38 x x x x x x 
palin25 0.94 0.07 x x x x x 
qsd 0.98 0.06 x 0.07 x x x 
query 0.95 x x 0.20 x x x 
conl x x x x x x x 
con6 x 0.13 x x x x x 
hanoi x x x x x x x 
ckt4 0.73 1.21 7.57 0.66 6.75 6.45 3.86 
mumath  x 1.08 x x x x x 
queens 0.23 1.08 x 0.67 x x x 
deep_bak x 0.04 x x x x x 
envir 0.11 x x x x x x 
map x 0.11 x x x x x 
knight x 0,28 x x x x x 

Table 12 

We see that as expected, performance is reduced, 
although not as significantly as one might expect. The 
increase in process creation time has a greater effect on OR- 
parallel performance than AND-parallel performance. This 
agrees with the data of the previous sectiom which indicates 
that programs in the benchmark set that exploited OR- 
parallelism spent a slightly higher portion of their execution 
time creating processes than AND-parallel programs. 

Space prevents further analysis of this and other simula- 
tion data. A more extensive study of parallel Prolog perfor- 
mance will appear in [Fag87]. 

11. Conclus ions  

We have presented the instruction set and architecture of 
the Aquarius  Multiprocessor System, based on the PPP execu- 
tion model outlined in [FaD87]. We have also presented the 
first detailed simulation results of Prolog programs compiled 
for AND-parallelism, OR-parallelism, and intelligent back- 
tracking. 

Our results indicate that  most Prolog benchmarks being 
written today are not likely to be sped up by parallel process- 
ing, due to either their inherent  sequentiality, the costs associ- 
ated with multiprocessing, or both. In order to effectively util- 
ize the processing power of multiprocessors, parallel Prolog 
programs must  create processes only when benefits are 
believed to outweigh costs. For systems with high process 
creation overhead, this would imply that  relatively few 
processes should be created, with each process doing a great 
deal of work. 

It should be noted that our work tests only the amount  of 
concurrency recoverable using the PPP execution model. 
There may be other execution models that  can extract more 
concurrency, but at this time no other simulation studies of 
this type of execution model are available. In addition, the 
PPP is theoretically more powerful than most parallel execu- 
tion models for Prolog, supporting restricted AND-parallelism, 
OR-parallelism, and intelligent backtracking. Thus  it is capa- 
ble of extracting major sources of performance improvement  in 
Prolog. Since a great deal of effort in the past  few years has 
been spent on parallel execution models for logic languages, 
we believe it will be very difficult to develop realistic execution 
models that  can extract more concurrency than the PPP. 

We would caution, however, against making strong gen- 
eralizations regarding the efficacy of a parallel Prolog on the 
basis of our results. Benchmarks are not natural  phenomena; 
they are artifacts of intelligence, constructed for a part icular 
purpose to run on a part icular machine. We face a chicken 
and egg problem in that  parallel Prolog programs that  can 
solve useful problems using multiprocessing are not likely to 
be written until the tools exist to develop and evaluate them. 
The existing tools for sequential Prolog program development 
(interpreters, compilers, simulators,  and sequential processors) 
are simply inadequate for the task. Thus the final verdict on 
the utility of parallel Prolog systems must  wait until  explicitly 
parallel benchmarks are developed and analyzed on existing 
multiprocessor hardware. 

12. F u t u r e  Work  

The results presented here are very much work in pro- 
gress. Research is continuing in a number  of areas. We are 
currently investigating the issues involved in implementing 
the process kernel efficiently. We are also developing an intel- 
ligent compiler for the PPP that  can make good decisions con- 
cerning the generation of parallel versus sequential code. 

In addition, we are studying better ways of managing 
memory in the PPP. Allocating separate writable address 
spaces for each process in the PPP, while encouraging efficient 
processor utilization and permitt ing the utilization of OR- 
parallelism [FAD87], also increases the complexity of memory 
management.  Assigning one address space per processor, as 
Hermenegildo [Her86] and Borgwardt [Bor84] suggest, drasti- 
cally simplifies many aspects of the system. It may be possible 
to incorporate the desirable memory management  properties of 
this model into the PPP, to simplify memory management  
while maintaining support for OR-parallelism and efficient 
processor utilization. 
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